A UNIQUENESS THEOREM OF THE INVERSE PROBLEM FOR A CLASS THE STURM - LIOUVILLE PROBLEM Kh. R. Mamedov, U. Demirbilek (Mersin, TURKEY) hanlar@mersin.edu.tr, ulviyedemirbilek@gmail.com

In the present paper, we study inverse problem of scattering theory for SturmLiouville operator on the half-axis $[0, \infty)$ with spectral paramater in the boundary condition for second order of differantial equation. We define the kernel function and determine the scattering data uniquely .
Keywords: Sturm-Liouville operator, scattering function, scattering data, Gelfand-Levitan-Marchenko main equation..

Introduction

We consider inverse problem of scattering theory for the Sturm-Liouville equation

$$
\begin{equation*}
-y^{\prime \prime}+q(x) y=\lambda^{2} y \tag{1}
\end{equation*}
$$

on the semi-axis $[0, \infty)$ containing a spectral parameter in the boundary condition

$$
\begin{equation*}
y^{\prime}(0)+\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) y(0)=0 . \tag{2}
\end{equation*}
$$

Here λ is a spectral parameter, $\alpha_{i}(i=0,1,2$.$) are real numbers that satisfy$ certain conditions. $q(x)$ is a real valued function satisfying the condition

$$
\begin{equation*}
\int_{0}^{\infty}(1+x)|q(x)| d x<\infty . \tag{3}
\end{equation*}
$$

It is well known (see [1]) that for all λ from the half-line Eq. (1) has the solution

$$
\begin{equation*}
e(x, \lambda)=e^{i \lambda x}+\int_{x}^{\infty} K(x, t) e^{i \lambda t} d t \tag{4}
\end{equation*}
$$

The kernel $K(x, t)$ satisfies the inequality

$$
\begin{equation*}
K(x, t) \leq \frac{1}{2} \sigma\left(\frac{x+t}{2}\right) \exp \left\{\sigma_{1}(x)-\sigma_{1}\left(\frac{x+t}{2}\right)\right\} . \tag{5}
\end{equation*}
$$

The inverse problem of scattering data without any spectral parameter in boundary condition was solved in $[1,2]$. The many spectral properties of the boundary value problems were investigated with different methods by the many authors in [1-7].

In this work we prove the uniqueness of the solution of the inverse problem of scattering theory on the half line for the boundary - value problem (1)-(2) by using defined the sacttering data of the problem and its properties.

With the above preliminaries provided, we have the following lemmas and theorems.

Lemma 1. For all $\lambda \neq 0$, the identity is valid

$$
\begin{equation*}
\frac{2 i \lambda w(x, \lambda)}{E(\lambda)}=e(x,-\lambda)-S(\lambda) e(x, \lambda) \tag{6}
\end{equation*}
$$

where

$$
\begin{gather*}
S(\lambda)=\frac{E_{1}(\lambda)}{E(\lambda)}, \tag{7}\\
E(\lambda)=e^{\prime}(0, \lambda)+\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) e(0, \lambda), \\
E_{1}(\lambda)=e^{\prime}(0,-\lambda)+\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) e(0,-\lambda)
\end{gather*}
$$

and

$$
|S(\lambda)|=1 .
$$

The scattering function $S(\lambda)$ is meromorphic in half plane $\operatorname{Im} \lambda>0$, with poles at the zeros of the function $E(\lambda)$. Moreover, the function $E(\lambda)$ is analytic in upper half plane. The function $E(\lambda)$ may have only a finite number of zeros in the half plane $\operatorname{Im} \lambda>0$.

We shall obtain the main equation that contributes to construct the potential $q(x)$ in the Eq. (1). To obtain the main equation, we substituting the relation (4) into the relation (6). Thus, the following results are valid:

Theorem 1. For each fixed $\neq 0$ the kernel $K(x, t)$ satisfies the following equation:

$$
\begin{equation*}
F(x+y)+K(x+y)+\int_{x}^{\infty} K(x, t) F(t+y) d t=0, \quad x<y<\infty \tag{8}
\end{equation*}
$$

Proof. From [3, Theorem 3.1.] it is clear that the main equation can be constructed.

Thus, we have the following theorem.
Theorem 2. For each $x \geq 0$, the kernel $(K(x, t))$ to the solution (4) satisfy the main equation (8).

Uniqueness

Lemma 2. Assume that the function $f_{x}(t)$ is summable on the half line for $t \geq x$

$$
\begin{equation*}
f_{x}(t)+\int_{x}^{\infty} f_{x}(u) F(u+t) d u=0 \tag{9}
\end{equation*}
$$

and there is a solution for $f_{x}(t) \equiv 0, t \geq x$.
Proof. It can be easily seen from [3, Lemma 4.1], the function $f_{x}(t)$ be solution of the integral equation, where $K(x, t)$ satisfies the equation (8). Then, the homogeneous equation (9) has only trival solution i.e. $f_{x}(t) \equiv 0$ for $t \geq x$.

Theorem 3. The scattering data of the boundary value problem (1) - (3) determine uniquely.

Proof. Given scattering function $S(\lambda)$ for $\lambda \neq 0$ and the scattering data can be determined according to Eq. (8). By virtue of the function $F(x)$, the main equation is constructed and it sufficies to find only scattering data of the boundary value problem (1)-(3). Given the scattering data, we can use formulas as follows:

$$
\begin{gathered}
F_{s}(x)=\frac{1}{2 \pi} \int_{x}^{\infty}[1-S(\lambda)] e^{i \lambda x} d \lambda \\
F(x)=\sum_{j=1}^{n} f_{j}(x)+F_{s}(x)
\end{gathered}
$$

and

$$
p_{j}(x)=e^{-i \lambda_{j} x} f_{j}(x), \quad j=1,2, \ldots, n
$$

By Lemma 2, the main equation has a unique solution. Futhermore, we find the function $K(x, t)$. It follows from, appliying (5) we have

$$
\begin{equation*}
q(x)=-2 \frac{d}{d x} K(x, x) \tag{10}
\end{equation*}
$$

Thus, the potential $q(x)$ can uniquely be found from (10).The theorem is proved.

REFERENCES

[1] Marchenko V. A. Sturm-Liouville Operators and Their Applications. Kiev : Naukova Dumka, 1977 (in Russian).
[2] Levitan B. M. Inverse Sturm-Liouville Problems. Utrecht: VNU Science Press, 1987.
[3] Mamedov Kh. R. Uniqueness of the solution of the inverse problem of scattering theory for the Sturm-Liouville operator with a spectral parameter in the boundary condition // Math. Notes. 2003. Vol. 74, № 1-2. P. 136-140.
[4] Mamedov Kh. R. On The Inverse Problem For Sturm-Liouville Operator With A Nonlinear Spectral Parameter In The Boundary Condition // J. Korean Math. Soc. 2009. Vol. 46, № 6. P. 1243-1254.
[5] Yurko V. A. An inverse problem for pencil of differantial operator on the half line // Sbornik Math. 2000. Vol. 191, № 9-10. P. 1561-1586.
[6] Yurko V. A. Reconstruction of the pencils of differantial operators on the half line // Mat. Zametki. 2000, Vol. 67, № 2. P. 316-320; Math. Notes. 2000. Vol. 67, № 1-2. P. 261-265..
[7] Yang Y., Wei G. Inverse Scattering Problems for Sturm Liouville Operators Spectral Parameter Dependent on Boundary Condition // Math. Notes. 2018. Vol. 103, № 1. P. 65-74.

