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1. INTRODUCTION

In 2004 H. Jiang, D. Li, and N. Jin [1] introduced the notion of multiresolution analysis (MRA) on
local fields F (s) of positive characteristic p, proved some properties and constructed “Haar MRA” and
corresponding “Haar wavelets”. The wavelet theory developed in [2–6]. Construction of non-Haar
wavelets is the a basic problem in this theory. The problem of constructing orthogonal MRA on the field
F (1) is studied in detail in the works [7–12]. S.F. Lukomskii, A.M. Vodolazov [13, 14] considered local
field F (s) as a vector space over the finite field GF (ps) and constructed non-Haar wavelets. In [13] the
authors construct the mask m(0) and correspondent refinable function ϕ using some tree with zero as a
root. In this case wavelets Ψ = (ψ(l))l∈GF (ps) may be found from the equality ψ̂(l) = m(l)(χ)ϕ̂(χA−1)

where A is a dilation operator, m(l)(χ) = m(0)(χr−l
0 ), and rlk are Rademacher functions. In the

article [15], the concept of N-valid tree was introduced and an algorithm for constructing the mask
m(0) and correspondent refinable function ϕ was indicated in the field F (1). In the articles [16, 17] the
mask m(0) and correspondent refinable function ϕ were constructed using graph which is obtained from
N-valid tree by adding new arcs. But in this case we cannot define “masks” m(l)(χ) by the equation
m(l)(χ) = m(0)(χr−l

0 ).

In this article we give an algorithm for construction of “masks” m(l)(χ) in general case.

2. BASIC CONCEPTS

Let p be a prime number, s ∈ N, GF (ps) is finite field. Local field F (s) of positive characteristic p is
isomorphic (Kovalski–Pontryagin theorem [18]) to the set of formal power series

a =

∞∑

i=k

ait
i, k ∈ Z, ai ∈ GF (ps).
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616 BERDNIKOV et al.

Addition and multiplication in the field F (s) are defined as sum and product of such series. Therefore we
will consider local field F (s) of positive characteristic p as the field of sequences infinite in both directions

a = (. . . ,0n−1,an,an+1, . . . ), aj ∈ GF (ps)

which have only finite number of elements aj with negative j nonequal to zero, and the operations of
addition and multiplication are defined by equalities

a+̇b = ((ai+̇bi))i∈Z, ab =

⎛

⎝
∑

i,j:i+j=l

(aibj)

⎞

⎠

l∈Z

,

where “+̇” and “·” are respectively addition and multiplication in GF (ps). The norm of the element
a ∈ F (s) is defined by the equality

||a|| = ||(. . . ,0n−1,an,an+1, . . . )|| =
(

1

ps

)n

, an �= 0.

Therefore F (s)
n = {a = (aj)j∈Z : aj ∈ GF (ps); aj = 0, ∀j < n} is a ball of radius p−ns. Neighborhoods

F
(s)
n are compact subgroups of the group F (s)+. We will denote them as F (s)+

n . They have the following

properties: 1) · · · ⊂ F
(s)+
1 ⊂ F

(s)+
0 ⊂ F

(s)+
−1 ⊂ . . . ; 2) F (s)+

n /F
(s)+
n+1

∼= GF (ps)+ и �(F
(s)+
n /F

(s)+
n+1 ) = ps.

It is noted in [13] that the field F (s) can be described as a linear space over GF (ps). Using this description
one may define the multiplication of element a ∈ F (s) on element λ ∈ GF (ps) coordinatewise, i.e.
λa = (. . . 0n−1,λan,λan+1, . . . ), and the modulus λ ∈ GF (ps) can be defined as

|λ| =
{
1, λ �= 0,

0, λ = 0.

It is also proved there, that the system gk ∈ F
(s)
k \ F (s)

k+1 is a basis in F (s), i.e. any element

a ∈ F (s) can be represented as a =
∑
k∈Z

λkgk, λk ∈ GF (ps). From now on we will consider gk =

(...,0k−1, (1
(0), 0(1), ..., 0(s−1))k,0k+1, ...). In this case λk = ak. Let us define the sets

H
(s)
0 = {h ∈ G : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s}, s ∈ N.

H0 = {h ∈ G : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s, s ∈ N}.

The set H0 is the set of shifts in F (s). It is an analogue of the set of nonnegative integers.
We will denote the collection of all characters of F (s)+ as X. The set X generates a commutative

group with respect to the multiplication of characters: (χ ∗ φ)(a) = χ(a) · φ(a). Inverse element is
defined as χ−1(a) = χ(a), and the neutral element is e(a) ≡ 1.

Following [13] we define characters rn of the groupF (s)+ in the following way. Let x = (. . . ,0k−1,xk,

xk+1, . . . ), xj = (x
(0)
j , x

(1)
j , . . . , x

(s−1)
j ) ∈ GF (ps). The element xj can be written in the form xj =

(xjs+0, xjs+1, . . . , xjs+(s−1)). In this case

x = (..., 0, xks+0, xks+1, . . . , xks+s−1, x(k+1)s+0, x(k+1)s+1, . . . , x(k+1)s+s−1, . . . )

and the collection of all such sequences x is Vilenkin group. Thus the equality rn(x) = rks+l(x) =

e
2πi
p

(xks+l) defines Rademacher function of F (s)+ and every character χ ∈ X can be described in the
following way:

χ =
∏

n∈Z
rann , an = 0, p− 1. (1)

The equality (1) can be rewritten as

χ =
∏

k∈Z
r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1 (2)
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and let us define r
a
(0)
k

ks+0r
a
(1)
k

ks+1 . . . r
a
(s−1)
k

ks+s−1 = rak
k , where ak = (a

(0)
k , a

(1)
k , . . . , a

(s−1)
k ) ∈ GF (ps). Then (2)

takes the form χ =
∏

k∈Z r
ak
k . We will refer to r

(1,0,...,0)
k = rk as the Rademacher functions. By definition

we set

(rak
k )bk = rakbk

k , χb =
(∏

rak
k

)b
=

∏
rakb
k , ak,bk,b ∈ GF (ps).

It follows that if x = ((x
(0)
k , x

(1)
k , . . . x

(s−1)
k ))k∈Z and u = (u(0), u(1), . . . , u(s−1)) ∈ GF (ps) then

(ruk ,x) =
s−1∏

l=0

e
2πi
p

u(l)x
(l)
k .

In [13] the following properties of characters are proved:

1) ru+̇v
k = ruk r

v
k , u,v ∈ GF (ps).

2) (rvk ,ugj) = 1, ∀k �= j, u,v ∈ GF (ps).

3) The set of characters of the field F (s) is a linear space (X, ∗, ·GF (ps)) over the finite field GF (ps)
with multiplication being an inner operation and the power u ∈ GF (ps)being an outer operation.

4) The set of Rademacher functions (rk) is a basis in the space (X, ∗, ·GF (ps)).

The dilation operator A in local field F (s) is defined as Ax :=
∑+∞

n=−∞ angn−1, where x =∑+∞
n=−∞ angn ∈ F (s). In the group of characters it is defined as (χA, x) = (χ,Ax).

3. STEP WAVELETS

We will consider a case of scaling function ϕ, which generates an orthogonal MRA, being a step

function. The set of step functions constant on cosets of a subgroup F
(s)
M with the support supp(ϕ) ⊂

F
(s)
−N will be denoted asDM(F

(s)
−N ), M,N ∈ N. Similarly, D−N (F

(s)
M

⊥
) is a set of step functions, constant

on the cosets of a subgroup F
(s)
−N

⊥
with the support supp(ϕ) ⊂ F

(s)
M

⊥
.

Let ϕ ∈ DM (F
(s)
−N ) generate an orthogonal MRA {Vn}, satisfies the refinement equation ϕ(x) =∑

h∈H(N+1)
0

βhϕ(Ax−̇h) [13], which we rewrite in a frequency from

ϕ̂(χ) = m(0)(χ)ϕ̂(χA−1), (3)

where m(0)(χ) = 1
ps

∑
h∈H(N+1)

0

βh(χA−1, h) is the mask of equation (3). There exist methods for con-

structing m(0)(χ) and ϕ̂(χ) (see e.g. [17]). We want to construct wavelets ψ(l), l ∈ GF (ps), l �= 0 from
refinable function ϕ. We will find these wavelets ψ(l) from the equations ψ̂(l)(χ) = m(l)(χ)ϕ̂(χA−1), and
will call the functions m(l)(χ) masks, too. It is evident that ψ̂(0)(χ) = ϕ̂(χ).

Theorem 1. Let m(k)(χ) (k ∈ GF (ps)) be a masks that are constant on the cosets of a subgroup

F
(s)
−N

⊥
and periodic with any period ra1

1 ra2
2 . . . raν

ν , aj ∈ GF (ps), ν ∈ N. Define wavelets ψ(l) by

the equations ψ̂(l)(χ) = m(l)(χ)ϕ̂(χA−1), where ϕ ∈ DM (F
(s)
−N ) is a refinable function. The shifts

system (ψ(l)(x−̇h(l))), l ∈ GF (ps), h(l) ∈ H0 will be orthonormal iff for any a−N . . . a−1 ∈ GF (ps)
∑

a0∈GF (ps)

m(k)(F
(s)⊥
−N r

a−N

−N . . . ra0
0 )m(l)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 ) = δk,l. (4)

Proof. The sufficiency. Let ϕ̂(χ) ∈ D−N (F
(s)
M

⊥
). Consider scalar product (ϕ(x−̇g), ψl(x−̇h)),

where g, h ∈ H0:

(ϕ(x−̇g), ψ(l)(x−̇h)) =

∫

F (s)

ϕ(x−̇g)ψ(l)(x−̇h)dμ(x) =

∫

X

ϕ̂·−̇g(χ)ψ̂
(l)

·−̇h
(χ)
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=

∫

X

ϕ̂(χ)ϕ̂(χA−1)(χ, g)(χ, h)m(l)(χ)dν(χ) =

∫

F
(s)⊥
M

|ϕ̂(χA−1)|2(χ, h−̇g)m(0)(χ)m(l)(χ)dν(χ)

=
∣∣∣h−̇g = h̃ = h−1g−1+̇h−2g−2+̇ . . .

∣∣∣

=
∑

a−N ...,a0,...,aM−1

∫

F
(s)⊥
−N r

a−N
−N ,...,r

a0
0 ,...,r

aM−1
M−1

|ϕ̂(F (s)⊥
−N r

a−N

−N . . . r
aM−1

M−1 A
−1)|2(χ, h̃)dν(χ)

×m(0)(F
(s)⊥
−N r

a−N

−N . . . ra0
0 )m(l)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 )dν(χ)

=
∑

a−N ,...,a0

m(0)(F
(s)⊥
−N r

a−N

−N . . . ra0
0 )m(l)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 )

×
∑

a1,a2,...,aM−1

|ϕ̂(F (s)⊥
−N r

a−N+1

−N . . . ra1
0 . . . r

aM−1

M−2 )|
2

∫

F
(s)⊥
−N r

a−N
−N ...r

a0
0 ...r

aM−1
M−1

(χ, h̃)dν(χ). (5)

By the orthonormality criteria for the system of shifts (ϕ(x−̇h)) of the refinable function ϕ ∀a−N , . . . ,
a0 ∈ GF (ps) the following equality holds:

∑

a1,a2,...,aM−1

|ϕ̂(F (s)⊥
−N r

a−N+1

−N . . . ra1
0 . . . r

aM−1

M−2 )|
2 = 1.

Consider integral from (5)
∫

F
(s)⊥
−N r

a−N
−N ...r

a0
0 ...r

aM−1
M−1

(χ, h̃)dν(χ) =
1

psN
1
F

(s)⊥
−N

(h̃)r
a−N

−N (h̃) . . . r
a−1

−1 (h̃)

=
1

psN
1
F

(s)⊥
−N

(h̃)
−1∏

j=−N

e
2πi
p

((hj ,aj)),

where (hj ,aj) = h
(0)
j a

(0)
j + · · · + h

(s−1)
j a

(s−1)
j is a scalar product. Let us introduce the following

notation:

m
(0)
a−N ...a0 = m(0)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 ), m

(l)
a−N ...a0 = m(l)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 ).

Then we obtain

(ϕ(·−̇g), ψ(l)(·−̇h)) =
1

psN
1
F

(s)⊥
−N

(h̃)
∑

a−N ,...,a0

m
(0)
a−N ...a0m

(l)
a−N ...a0

−1∏

j=−N

e
2πi
p

((hj ,aj))

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if h̃ /∈ F
(s)⊥
−N ;

1
psN

∑
a−N ,...,a0

m
(0)
a−N ...a0m

(l)
a−N ...a0 , if h̃ = 0;

1
psN

∑
a−N ,...,a−1

−1∏
j=−N

e
2πi
p

((hj ,aj))∑
a0

m
(0)
a−N ...a0m

(l)
a−N ...a0 , if h̃ �= 0, h̃ ∈ F

(s)⊥
−N .

(6)

For (ψ(k)(x−̇g), ψ(l)(x−̇h)) we can derive similar equality:

(ψ(k)(·−̇g), ψ(l)(·−̇h)) =
1

psN
1
F

(s)⊥
−N

(h̃)
∑

a−N ,...,a0

m
(k)
a−N ...a0m

(l)
a−N ...a0

−1∏

j=−N

e
2πi
p

((hj ,aj))
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=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if h̃ /∈ F
(s)⊥
−N ;

1
psN

∑
a−N ,...,a0

m
(k)
a−N ...a0m

(l)
a−N ...a0 , if h̃ = 0;

1
psN

∑
a−N ,...,a−1

−1∏
j=−N

e
2πi
p

((hj ,aj))∑
a0

m
(k)
a−N ...a0m

(l)
a−N ...a0 , if h̃ �= 0, h̃ ∈ F

(s)⊥
−N .

(7)

Thus, if masks m(j) for all a−N . . . a−1 ∈ GF (ps) satisfy the condition
∑

a0

m
(k)
a−N ...a0m

(l)
a−N ...a0 = δk,l,

then the system of shifts (ψ(l)(x−̇h(l))), l ∈ GF (ps) is an orthonormal system.
The necessity. Let us fix k, l ∈ FG(ps) and consider equalities (6), (7) as a system of linear equation

with unknowns xk,la−N ...a−1 =
∑

a0
m

(k)
a−N ...a0m

(l)
a−N ...a0 and consider the matrix A of this system. It is

obvious that A is a square matrix psN × psN . Let us prove that its determinant is nonequal to zero.
Let us start with N = 1, s = 1. In this case

A =
1

p

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 e
2πi
p e

2πi
p

·2
. . . e

2πi
p

·(p−1)

1 e
2πi
p

·2 e
2πi
p

·2·2 . . . e
2πi
p

·2·(p−1)

...
...

...
...

...

1 e
2πi
p

·(p−1)
e

2πi
p

·(p−1)·2
. . . e

2πi
p

·(p−1)·(p−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= V,

where V is Vandermonde matrix, which is known to have nonzero determinant. For the sake of clarity
let us consider a case N = 2, s = 1. In this case the matrix A may be represented as block matrix

A =
1

p

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V V V . . . V

V e
2πi
p V e

2πi
p

·2
V . . . e

2πi
p

·(p−1)
V

V e
2πi
p

·2V e
2πi
p

·2·2V . . . e
2πi
p

·2·(p−1)V
...

...
...

...
...

V e
2πi
p

·(p−1)
V e

2πi
p

·(p−1)·2
V . . . e

2πi
p

·(p−1)·(p−1)
V

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= V ⊗ V,

where ⊗ symbol corresponds to Kronecker product. By the properties of Kronecker product detV ⊗ V =
(detV )p(detV )p = (detV )2p �= 0. Thus, again matrix A is nonsingular.

For the case of arbitrary N , s = 1 matrix A can be represented as A = V ⊗ V ⊗ · · · ⊗ V N times and
will again have nonzero determinant by the properties of Kronecker product.

Similarly, when N and s are both arbitrary A = V ⊗ V ⊗ · · · ⊗ V sN times. Thus, the system is
nonsingular and has a unique solution, which proves the necessity. �

Theorem 1 can be reformulated in the following way: m(k)(χ) are the masks of corresponding
step compactly supported orthonormal wavelets ψ(l)(χ) if and only if for each a−N . . . a−1 ∈ GF (ps)

matrix M(a−N . . . a−1) with elements Ml,a0(a−N , . . . ,a−1) = m(l)(F
(s)⊥
−N r

a−N

−N . . . ra0
0 ) is unitary. The

sufficiency of this theorem was proved in [1] (theorem 3). For step refinable functions the condition (4)
is necessary and sufficient. If the condition (4) is fulfilled then the functions ψ̂(l)(χ) = m(l)(χ)ϕ̂(χA−1)
form a wavelet system [1]. For a step refinable function we can describe an algorithm for constructing
masks m(l) and wavelets ψ(l), l ∈ GF (ps).

Let us assume we have all the values of m(0)(χ). We may obtain them using an algorithm presented
in [17]. Recall the notation:

m
(0)
a−N ...a0 = m(0)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 ), m

(l)
a−N ...a0 = m(l)(F

(s)⊥
−N r

a−N

−N . . . ra0
0 ).
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620 BERDNIKOV et al.

1) For each a−N . . . a−1 we construct a matrix
M(a−N . . . a−1) ∈ Matps×ps(C) with elements Ml,a0(a−N . . . a−1) the following way. The first row
consists of all the values

m
(0)
a−N ...a−1,0

,m
(0)
a−N ...a−1,1

, . . . ,m
(0)
a−N ...a−1,ps−1,

where a−N . . . a−1 are fixed and j = a
(0)
0 + a

(1)
0 p+ · · ·+ a

(s−1)
0 ps−1 calculated from a0 = (a

(0)
0 , a

(1)
0 , . . . ,

a
(s−1)
0 ). Supplement this matrix to unitary in the following way.

If m(0)
a−N ...a−1,0

�= 0 then we make Ml,l = 1 for l �= 0 and Ml,a0 = 0 for l �= 0, l �= a0.

If m(0)
a−N ...a−1,0

= 0 then there exists number

j = j(a0) = a
(0)
0 + a

(1)
0 p+ · · ·+ a

(s−1)
0 ps−1

for which m
(0)
a−N ...a−1,j

�= 0. This nonzero value exists by the property of m(0) (see e.g.[1]). In this case
we make Mj,0 = 1, Ml,l = 1 for l �= 0, l �= j, and Ml,a0 = 0 in another case.

2) Run the Gram–Schmidt process on each matrix in order to make them unitary.

3) Now for each l ∈ GF (ps), l �= 0 we find the values of the mask m(l) from the equalities

m(l)(F
(s)⊥
−N r

a−N

−N . . . ra0
0 ) = Ml,a0(a−N . . . a−1).

4) The wavelets ψ(l) can be obtained using the formula ψ̂(l)(χ) = m(l)(χ)ϕ̂(χA−1) and performing
inverse Fourier transform.
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