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ANALYTIC FUNCTIONS WITH SMOOTH

ABSOLUTE VALUE OF BOUNDARY DATA

F.A. SHAMOYAN

Abstract. Let f be an analytic function in the unit circle D continuous up to its boundary
Γ, f(z) 6= 0, z ∈ D. Assume that on Γ, the function f has a modulus of continuity

ω(|f |, δ). In the paper we establish the estimate ω(f, δ) 6 Aω(|f |,
√
δ), where A is a some

non-negative number, and we prove that this estimate is sharp. Moreover, in the paper
we establish a multi-dimensional analogue of the mentioned result. In the proof of the
main theorem, an essential role is played by a theorem of Hardy-Littlewood type on Hölder
classes of the functions analytic in the unit circle.
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Introduction

Let D = {z ∈ C : |z| < 1} be a bounded unit circle in the complex plane C and Γ be its
boundary. By CA we denote the set of all functions f analytic in D and continuous in D ∪ Γ.
If f ∈ C(Γ), then by the symbol ω(f, δ) we denote the modulus of continuity of the function f

on Γ, that is,

ω(f, δ) =
{

sup |f(γ)− f(γeit)|, γ ∈ Γ, |t| 6 δ, t ∈ R
}

.

In the paper we consider the following problem: let f ∈ CA and at the unit circle the
function |f(eiθ)| has the modulus of continuity ω(|f |, δ). What is the modulus of continuity of
the function f on Γ and hence, on D ∪ Γ?

Such problem in the classes of continuous functions with the modulus of continuity satisfying
Bari-Stechkin condition

δ
∫

0

ω(|f |, δ)
t

dt+ δ

π
∫

δ

ω(|f |, δ)
t2

dt = O
(

ω(|f |, δ)
)

, δ → 0, (1)

was solved first in work by V.P. Khaving and the author, see [5].
It was established that if ω(|f |, δ) satisfies Bari-Stechkin condition (1) and f(z) 6= 0, z ∈ D,

then
ω(f, δ) = O

(

ω(|f |,
√
δ)
)

, δ → 0.

Moreover, it was shown by simple examples that the obtained estimate was sharp and the
condition f(z) 6= 0, z ∈ D, is necessary in the known sense. The detailed proof of these
statements was exposed in [7]. This work gave rise to rather interesting studies in this direction.
First V.P. Khavin, see [6], proposed an interesting approach for obtaining such estimates;
this was done by applying the methods of the theory of singular integral operators. Later
N.A. Shirokov (see [8], [10]) extended the results of such type for external functions and Hölder
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classes of order α, α ∈ (0,+∞) and he obtained the necessary and sufficient condition for
|f(eiθ)| ensuring that the function f has a prescribed modulus of continuity on the set D ∪ Γ.
In these works there were introduced a new characteristics and in terms of this characteristics,
N.A. Shirokov obtained the results of such kind also for the Besov classes of analytic functions
in D ∪ Γ. And finally, we mention work [2], where it was established that this phenomenon
has a local character, that is, if the modulus of continuity |f | on the circle satisfies the Hölder
condition of order α just at one point, then f belongs to the Hölder class of order α

2
at this

point.
We note that the proof by V.P. Khavni and the proof of the results in works [2], [6], [8], [10]

are based on gentle and fine methods of complex and harmonic analysis. In our opinion, the
approach applied in works [5] and [7] and is based on classical theorems of Hardy-Littlewood
type theorems (see [3], [4]) is more simple. In this work by developing the methods of works [5],
[7] we prove such results for the modulus of continuity ω(|f |, δ) satisfying the classical Zygmund
condition

δ
∫

0

ω(|f |, t)
t

dt = O
(

ω(|f |, δ)
)

, δ → 0. (2)

The following statement is true.

Theorem 1. Let f be a function in the class CA and f(z) 6= 0, z ∈ D. If the modulus of
the continuity ω(|f |, δ) of the function |f | on Γ satisfies Zygmund condition (2), then

ω(f, δ) = O
(

ω(|f |,
√
δ)
)

, δ → 0, (3)

and this estimate is sharp.

Remark 1. A simple example, the function

f(z) = (1− z)2α exp

(

−1 + z

1− z

)

, z ∈ D ∪ Γ, α ∈ (0,+∞),

where the principal branch of the power function is chosen, shows the sharpness of the statement
of Theorem 1.

The analogue of Theorem 1 is true for analytic functions in the unit ball of the space Cn.
In order to formulate it, we introduce some notations. Let z = (z1, . . . , zn) ∈ Cn, ‖z‖ =
√

|z1|2 + . . .+ |zn|2. We define Bn = {z ∈ Cn : ‖z‖ < 1} and Sn = {z ∈ Cn : ‖z‖ = 1}.
By H(Bn) we denote the set of all analytic functions in Bn. Let f ∈ H(Bn) and f(z) =

+∞
∑

k=0

fk(z) be the expansions of the function f into homogeneous polynomials; by R(f) the radial

derivative of the function f [11], that is,

R(f)(z) =

+∞
∑

k=1

kfk(z), z ∈ Bn.

We introduce also the notation:

CA(Bn) = H(Bn) ∩ C(Bn ∪ Sn).

The following estimate of Theorem 1 is true in the classes CA(Bn).

Theorem 2. Let f ∈ CA(Bn) and the modulus of continuity ω(|f |, δ) of the function |f | on
Sn satisfies Zygmund condition (2). Then the modulus of continuity of the function on the set
Bn ∪ Sn satisfies the estimate

ω(f, δ) 6 Aω(|f |,
√
δ), 0 6 δ 6 2.
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Remark 2. For Hölder classes, that is, as ω(f, t) = tα, 0 < α 6 1, t ∈ [0, 2], the analogue
of Theorem 2 was established in work [9] by N.A. Shirokov.

1. Proof of auxiliary statements

Let f and g be real-valued functions with a common domain E ⊂ C. Then the relation f . g

on E is equivalent to the following: there exists a positive number A such that f(z) 6 Ag(z)
for each z ∈ E. If f . g and simultaneously g . f , then f(z) ≈ g(z).

In what follows, as a function of modulus of continuity type we call a non-negative non-
decreasing function ω on [0,+∞) such that

ω(0) = 0, ω(δ1 + δ2) 6 ω(δ1) + ω(δ2), ω(λδ) 6 2λω(δ), λ, δ ∈ [0,+∞).

Lemma 1. Let ω be a function of modulus of continuity type satisfying Zygmund condition
(2), then

ω(δ) ln
1

δ
. ω(

√
δ), δ > 0. (4)

Proof. By the definition we have
√
δ

∫

0

ω(u)

u
du 6 Aω(

√
δ).

It is clear that if 1 6 δ, then estimate (4) is obvious and this is why we assume that 0 < δ < 1.
Then √

δ
∫

0

ω(u)

u
du =

δ
∫

0

ω(u)

u
du+

√
δ

∫

δ

ω(u)

u
du.

Hence, √
δ

∫

0

ω(u)

u
du > ω(δ)

√
δ

∫

δ

du

u
=

ω(δ)

2
ln

1

δ
.

It remains to employ Zygmund condition. The proof is complete.

Lemma 2. Let f ∈ CA, t = |t|τ , t ∈ D, τ ∈ Γ. Then the estimate

|f(t)| .
(

|f(τ)|+ ω(f, (1− |t|)) ln 1

1− |t|

)

is true.

Proof. We have

f(t) =
1

2π

∫

Γ

Pt(ξ)f(ξ)|dξ|.

where Pt(ξ) is the Poisson kernel. This is why

|f(t)| 6 1

2π

∫

Γ

Pt(ξ)|f(ξ)− f(τ)||dξ|+ |f(τ)|.

Therefore,
|f(t)| . (|f(τ)|+ Jω) , (5)

where

Jω :=
1

2π

∫

Γ

Pt(ξ)ω(f, |ξ − τ |)dτ.
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We proceed to estimating the latter integral. It is clear that

Jω .

∫

Γ

(1− |t|2)ω(f, |ξ − τ |)
(1− |t|)2 + |ξ − τ |2 |dξ| .

π
∫

0

(1− |t|2)ω(f, u)
(1− |t|)2 + u2

du.

We define ω(f, δ) on R+ = [0,+∞) as a function of modulus of continuity type (see [1], [4]).
Then

Jω .

π

1−|t|
∫

0

ω(f, v(1− |t|))
1 + v2

dv.

Representing this integral as the sum

1
∫

0

ω(f, v(1− |t|))
1 + v2

dv +

π

1−|t|
∫

1

ω(f, v(1− |t|))
1 + v2

dv,

and taking into consideration that ω(f,δ)
δ

does not increase (see [1], [4]), we obtain

Jω . ω(f, 1− |t|)

π

1−|t|
∫

1

v

1 + v2
.

Hence,

Jω . ω(f, 1− |t|) ln 1

1− |t| . (6)

By (5), (6) we arrive at the statement of the lemma.

Lemma 3. (see [3]). Let λ be a positive non-decreasing function on (0, 1) and

1
∫

0

λ(u)du < +∞.

Assume that f is an analytic function in D such that

sup
z∈D

{ |f ′(z)|
λ(|z|)

}

< +∞.

Then the function f belongs to the class CA and

ω(f, δ) .

1
∫

1−δ

λ(u)du.

Lemma 4. Let f ∈ CA, f(z) 6= 0, z ∈ D, |f(z)| 6 1, z ∈ D. Then there exists a number
M > 0 possessing the following properties: for an arbitrary 0 < a < 1, the function f in D can
be represented as

f(z) = Φa(z)Ψa(z), z ∈ D,
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where Ψa is an analytic function in D such that |Ψa| is continuously extended to the entire
closed circe D ∪ Γ,

a 6 |Ψa(t)| 6 1 for each t ∈ D,
∣

∣|Ψa(t
′)| − |Ψa(t

′′)|
∣

∣ 6
∣

∣|f(t′)| − |f(t′′)|
∣

∣, t′, t′′ ∈ Γ,
∫

Γ

∣

∣ ln |Ψa(t)|
∣

∣dt| 6 M, (7)

Φa(z) = exp



−
∫

Γ

Sz(t)dµa(t)



 , z ∈ D,

where Sz(t) is the Schwarz kernel for the circle D, µa is a non-negative Borel measure Γ, whose
total variation does not exceed M .

Proof. Let Ha(t) = max(a, |f(t)|), t ∈ Γ. We have

Ψa(z) := exp





1

2π

∫

Γ

Sz(t) lnHa(t)|dt|



 ,

Φa(z) = f(z) (Ψa(z))
−1 := exp



−
∫

Γ

Sz(t)dµa(t)



 , z ∈ D,

where

µa(E) = −
∫

Ea

ln

( |f(t)|
a

)

|dt|+ µ(E), (8)

µ is a non-negative measure defining the singular part of the function f , E is an arbitrary Borel
set in Γ, Ea = {γ ∈ Γ : |f(γ)| 6 a}. It is clear that |Ψa| on Γ coincides with Ha. Estimate (7)
is obtained by the following inequality

∫

Γ

| ln |Ψa(ξ)|||dξ| =
∫

E(|f |>a)

| ln |Ψa(ξ)|||dξ|+
∫

E(|f |<a)

| ln |Ψa(ξ)|||dξ|

=

∫

E(|f |>a)

| ln |Ψa(ξ)|||dξ|+ σ(Ea) ln
1

a
,

where σ is the Lebesgue measure on Ea.
It remains to note that

Ea = E(|f | 6 a) = E

(

ln
1

|f | > ln
1

a

)

;

re recall that max |f | 6 1, 0 < a < 1.
The finiteness of the integral

∫

Γ

| ln |f(ξ)|||dξ| implies that

sup
A>0

Aσ(γ ∈ Γ : | ln |f(γ)|| > A) < +∞.

This proves (7).
Now we are going to estimate µa(E). In order to do it, we denote by Va(E), the first term

in the right hand side in (8) and we note that µa(Γ) 6 Va(Γ) + µ(Γ). This is why

Va(Γ) 6

∫

Γ

| ln |f ||dt+ | ln a|σ(Γa),
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where

Γa = {γ ∈ Γ : | ln |f(γ)|| > | ln a|}.
Following the lines of the proof of inequality (7), we obtain the last statement of the lemma.
The proof is complete.

Remark 3. Employing the Jensen inequality, it is easy to observe that if ‖f‖CA
< 1, then

|µa(Γ)| . ln
1

|f(0)| ,
∫

Γ

|ln |Ψa|| |dt| . ln
1

|f(0)| .

2. Proof of theorems

Proof of Theorem 1. Without loss of generality we assume that |f(t)| 6 1, t ∈ Γ. Moreover,
for the sake of convenience we denote ω(δ) := ω(|f |, δ), 0 6 δ 6 2, and at that,

|f(t′)| − |f(t′′)| 6 1

2
ω(|t′ − t′′|) for allt′, t′′ ∈ Γ.

Employing Lemma 3, it is sufficient to establish the estimate

|f ′(t)| . ω(
√

1− |t|)
1− |t| , t ∈ D.

Let t ∈ D be a fixed point in the circle D and in Lemma 4 we choose a = ω(
√

1− |t|).
We introduce the notations

Ft(t) = Ψ
ω
(√

1−|t|
)(t), ft(t) = Φ

ω
(√

1−|t|
)(t).

We observe that

f ′(t) = f ′
t(t)F

′
t (t) + f ′

t(t)Ft(t)

1◦. Estimate for |ft(t)||F ′
t(t)|. To estimate this product, let us first prove the inequality

|Ft(t)| . |Ft(τ)|, t = |t|τ, τ ∈ Γ. (9)

By Lemma 2,

|Ft(t)| .
(

|Ft(τ)|+ ω(1− |t|) ln 1

1− |t|

)

.

This is why to prove inequality (9), it is sufficient to establish the estimate

sup
t∈D

{ω(1− |t|) ln 1

1− |t|
∣

∣F−1
t (τ)

∣

∣} < +∞.

Suppose first that

max(|f(τ)|, ω(
√

1− |t|)) = |f(τ)|,
then by Lemma 4 we have

|Ft(τ)| > ω(
√

1− |t|).
This is why, taking into consideration the estimate

ω(1− |t|) ln 1

1− |t| . ω
(
√

1− |t|
)

,

we obtain
ω(1− |t|) ln 1

1−|t|
|Ft(τ)|

.
ω(

√

1− |t|)
ω(

√

1− |t|)
. 1.

Now we consider the case |f(τ)| 6 ω(
√

1− |t|). Applying Lemma 1 once again, we get
desired estimate (9).
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We proceed to estimating the functions |ft(t)|,
∣

∣F ′
t (t)

∣

∣. Let

Γ1 = {γ ∈ Γ : ω(|γ − τ |) 6 |Ft(τ)|}, Γ2 = Γ \ Γ1.

Then we have
|ft(t)| |F ′

t (t)| 6 |F ′
t (t)| .

At that,

|F ′
t (t)| = |Ft(t)|

∣

∣

∣

∣

∣

∣

∫

Γ

|Ft(γ)|
2γ

(γ − t)2
|dγ|

∣

∣

∣

∣

∣

∣

= |Ft(t)|

∣

∣

∣

∣

∣

∣

∫

Γ

(ln |Ft(γ)| − ln |Ft(τ)|)
(γ − t)2

∣

∣

∣

∣

∣

∣

. |Ft(τ)|





∣

∣

∣

∣

∣

∣

∫

Γ1

(ln |Ft(γ)| − ln |Ft(τ)|)
(γ − t)2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

Γ2

(ln |Ft(γ)| − ln |Ft(τ)|)
(γ − t)2

∣

∣

∣

∣

∣

∣





. |Ft(τ)|
∫

Γ1

|ln |Ft(γ)| − ln |Ft(τ)||
|γ − t|2 |dγ|+ |Ft(τ)|

∫

Γ2

|ln |Ft(γ)|| |dγ|
|γ − t|2

+ |Ft(τ)| |ln |Ft(τ)||
∫

Γ2

|dγ|
|γ − t|2

def
= [I1 + I2 + I3].

Estimate for I1. If γ ∈ Γ1, by the mean theorem we have

|ln |Ft(γ)|| − |ln |Ft(τ)|| 6
||Ft(γ)| − |Ft(τ)||

min
γ∈Γ1

(|Ft(γ)| , |Ft(τ)|)
6

||f(γ)| − |f(τ)||
min
γ∈Γ1

(|Ft(γ)| , |Ft(τ)|)
.

In view of the definition of Γ1, we have

|Ft(γ)| > ||Ft(τ)| − |Ft(τ)− Ft(γ)|| > |Ft(τ)| −
1

2
ω(|γ − τ |) > 1

2
|Ft(τ)| .

Therefore,

I1 .
1

1− |t|

∫

Γ

ω(|γ − τ |)Pt(γ)|dγ|,

where Pt(γ) is the Poisson kernel.
Employing Lemma 2, we obtain

I1 .
ω(1− |t|)
1− |t| ln

1

1− |t| .

By Lemma 1, we finally get

I1 .
ω(

√

1− |t|)
1− |t| , t ∈ D.

Estimate for I2. Let

Kt(γ) =
1

(γ − t)2
, γ ∈ Γ, t ∈ D.

Then we have

I2 6 |Ft(τ)|max
γ∈Γ2

|Kt(γ)|
∫

Γ

|ln |ft(γ)|| |dγ| . |Ft(τ)|max
t∈Γ2

|Kt(γ)| .

In the latter estimate we have employed Lemma 4.
Now, taking into consideration the definition of Γ2, we obtain

I2 . |Ft(τ)|max
γ∈Γ2

1

(|γ − τ |2 + (1− |t|))2 . |Ft(τ)|max

{

1

x2
, x : ω(x) > |Ft(τ)|

}

.
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Let x∗ ∈ (0, 2] be such that
ω(x∗) = |Ft(τ)| . (10)

Then by the latter estimate we get

I2 .
|Ft(τ)|
(x∗)2

= Cf

ω(x∗)

(x∗)2
.

The inequality |Ft(τ)| > ω(
√

1− |t|) implies
√

1− |t| 6 x∗. This is why,

ω(x∗)

(x∗)2
=

ω(x∗)

x∗ · x∗ 6
ω(

√

1− |t|)
√

1− |t|
1

√

1− |t|
=

ω(
√

1− |t|)
1− |t| ,

that is,

I2 .
ω(

√

1− |t|)
(1− |t|) .

Estimate for I3. We have

I3 = |Ft(τ)| |ln |Ft(τ)||
∫

Γ2

|dγ|
|γ − t|2 . |Ft(τ)| |ln |Ft(τ)||

∫

ω(u)>|Ft(τ)|

du

u2 + (1− |t|)2

= |Ft(τ)| |ln |Ft(τ)|| .
|Ft(τ)| |ln |Ft(τ)||

(1− |t|)

(

π

2
− arg cot

x∗

1− |t|

)

,

(11)

where x∗ is introduced by identity (10).
Taking into consideration the elementary inequality

0 6
π

2
− arg cotV 6

H

1 + V
, V ∈ [0,+∞),

by estimate (11) we finally obtain

I3 . |Ft(τ)| |ln |Ft(τ)||
H

1− |t|+ x∗ .

Now, in view of the estimates

sup
06u62

u| lnu| 6 e, x∗ >
√

1− |t|,

by (11) we get

I3 .
1

√

1− |t|
ω(

√

1− |t|)
√

1− |t|
= Cf

ω(
√

1− |t|)
1− |t| .

In the latter inequality we employed the inequality ω(δ)
δ

> ω(1) as 0 < δ 6 1.
2◦. Estimate for |Ft(τ)| |f ′

t(t)| As above, we let

Kt(ξ) =
1

(t− ξ)2
, ξ ∈ Γ, t ∈ D.

Then

f ′
t(t) = ft(t)

∫

Γ

Kt(ξ)dµ
t(ξ),

where the measure µt is supported in the set

Et =
{

γ ∈ Γ : |f(γ)| 6 ω(
√

1− |t|)},
at that, µt(Γ) 6 M .

Letτ ∗ ∈ Et be the point closest to the point t. Then by Lemma 2 we get

|Ft(t)| .
[

|Ft(τ)|+ ω(1− |t|) ln 1

1− |t|

]

. (12)
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Hence,

|Ft(t)| .
(

|Ft(τ)− Ft(τ
∗)|+ |Ft(τ

∗)|ω(1− |t|) ln 1

1− |t|

)

.

Since τ ∗ ∈ Et, then |Ft(τ
∗)| 6 ω(

√

1− |t|). Therefore, by estimate (12) we obtain

|Ft(t)| .
[

ω(|τ − τ ∗|) + ω(1− |t|) ln 1

1− |t| + ω(
√

1− |t|)
]

.

By Lemma 1 we have

|Ft(t)| |f ′
t(t)| .

[

ω(|τ − τ ∗|) + ω(
√

1− |t|)
]

|ft(t)|
∫

Γ

|Kt(ξ)| dµt(ξ),

that is,

|Ft(t)| |f ′
t(t)| .

[

|f ′
t(t)|ω(|τ − τ ∗|) |+f ′

t(t)|ω(
√

1− |t|)
]

.

We proceed to estimating the expression in the brackets.
Let

J1 = |f ′
t(t)|ω(|τ − τ ∗|) = ω(|τ − τ ∗|) |ft(t)|

∫

Γ

dµt(ξ)

|ξ − t|2 ,

J2 = |f ′
t(t)|ω(

√

1− |t|).
We first estimate J2.

We have

J2 .ω(
√

1− |t|)
∫

Γ

dµt(ξ)

|ξ − t|2 exp
(

−1 − |t|2
|ξ − t|2dµ

t(ξ)

)

.
ω(

√

1− |t|)
1− |t| sup

u>0
e−uu .

ω(
√

1− |t|)
1− |t| .

(13)

We proceed to estimating J1. If ω(|τ − τ ∗|) . ω(
√

1− |t|), then J1 can be estimated exactly

in the same way as J2. This is why we assume that ω(
√

1− |t|) 6 ω(|τ − τ ∗|). In view of the

monotonicity of the function ω, the latter estimate implies
√

1− |t|) 6 |τ − τ ∗|. Therefore, we
obtain

J1 .ω(|τ − τ ∗|)|ft(t)|
1

|t− τ ∗|2 .
ω(|τ − τ ∗|)
|t− τ ∗|

1

|t− τ ∗|

.
ω(|τ − τ ∗|)
|τ − τ ∗|

1
√

1− |t|
.

ω(
√

1− |t|)
(
√

1− |t|)(
√

1− |t|)
=

ω(
√

1− |t|)
1− |t| , t ∈ D.

(14)

In the latter inequality we have employed the non-increasing of the function ω(δ)
δ

on (0, 2).
Estimates (13), (14) imply the statement of the theorem.

Let us outline the proof of Theorem 2.
Let f satisfy the assumptions of Theorem 2. We consider the following cut-off function:

f(λ) = f(λξ), λ ∈ D, ξ ∈ Sn, a point ξ is fixed, see [11].
It is easy to see that fξ(λ) satisfies the assumptions of Theorem 1. In view of Remark 2, we

establish the estimate

|fξ(λ1)− fξ(λ2)| 6 Aω
(

√

|λ1 − λ2|
)

, λ1, λ2 ∈ D,

and A is independent of ξ ∈ Sn.
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Employing the identity

R(f)(z) = n

∫

Sn

dσ(ξ)
1

2π

π
∫

−π

〈z, ξ〉e−iθf(eiθξ)dθ

(1− 〈z, ξ〉e−iθ)n+1 , z ∈ Bn,

where R is the radial derivative, see [11], we get the estimate

|R(f)(z)| . ω(
√

1− ‖z‖)
1− ‖z‖ , z ∈ Bn.

Arguing as in the proof of Theorem 7.9 in [11], we arrive at the statement of Theorem 2.
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