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1. Introduction

Let C be the complex plane, D be the unit disk on C, H(D) be the set of all
functions, holomorphic in D, M(D) be the set of all functions, meromorphic
in D. For any α > 0 we define the class S∞

α as:

S∞
α :=

{
f ∈M(D) : T (r, f) ≤

Cf

(1− r)α

}
,

where Cf > 0 is a positive constant, values of which depend on the function
f , r ∈ [0, 1), T (r, f) is the Nevanlinna characteristic of the function f (see
[7]):

T (r, f) =
1

2π

π∫

−π

ln+ |f(reiϕ)|dϕ+N(r, f),
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N(r, f) =
r∫
0

n(t,∞)−n(0,∞)
t

dt, 0 < r < 1, n(t,∞) is the number of poles in the

disk |z| < t, 0 < t < 1; n(0,∞) is the multiplicity of the pole at the point
z = 0, a+ = max(a, 0), a ∈ R. We also denote

S∞
α,a := S∞

α

⋂
H(D).

It worth mentioned that classes S∞
α first was emerged in the famous

works of Rolf Nevanlinna (see [7]). He tried to disseminate the results of
J. Hadamard and E. Borel (see [4]) to the case of meromorphic functions in
a disk. He proved that if {ak}, {bk} are the set of zeros and poles of certain
function from the class S∞

α , then the series converges:

+∞∑

k=1

(1− |ak|)
α+2+ε < +∞,

+∞∑

k=1

(1 − |bk|)
α+2+ε < +∞,

for an arbitrary ε > 0. Attempts to obtain a complete description of these sets
have also been made by famous Japanese mathematician M. Tsuji (see [16,
17]). This problem was finally solved by F. A. Shamoyan and E. N. Shubabko
(see [12]). Namely the following result was provided:
In order to a = {ak}

∞
1 , b = {bk}

∞
1 ⊂ D are the set of zero and poles certain

function f ∈ S∞
α , it is necessary and sufficient, that

n(r, a) = card{ak : |ak| < r} ≤
c1

(1− r)
α+1 ,

n(r, b) = card{bk : |bk| < r} ≤
c2

(1− r)
α+1 ,

0 < r < 1, c1, c2 > 0.
They also constructed factorization theory of the class S∞

α .
It is well known that if f ∈ S∞

α,a, then

M(r, f) = max
|z|≤r

|f(z)| ≤ exp

{
cf

(1− r)α+1

}
(1.1)

for all α > 0, cf > 0 (see [7]).
State the problem of multiple interpolation for the class S∞

α,a. Let {αk}
∞
1

and {γk}
∞
1 be the arbitrary sequences of complex numbers from D; put pj

be the multiplicity of the number αj in the {αk}
∞
1 , sj ≥ 1 be the multiplicity

of the number αj on the interval {αk}
j
1. Obviously, 1 ≤ sj ≤ pj ≤ +∞. We

need to find the criteria for {αk}
∞
1 and {γk}

∞
1 , providing the existence of a

function f ∈ S∞
α , such that

f (sk−1)(αk) = γk, k = 1, 2, ...

Let us note that interpolation theory has become intensively developed
since Carleson’s fundamental work (1958) on interpolation in the class of
bounded analytic functions (see [1]). The term of free interpolation was first
introduced in [18] by Vinogradov and Havin (1974). The interpolation prob-
lem in subclasses of the bounded type functionsN was investigated there. The
same problem in the Nevanlinna and Smirnov classes was solved in [6, 5] by
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Naftalevic (1956) and Hartmann at al. (2004). These questions in the Hardy
and Bergman spaces was studied in works of Shapiro and Shields (1961), Seip
(2004) (see [14, 8]). Multiple interpolation problem in Hardy classes Hp was
solved in the works of M. Djrbashian and Ayrapetian (see [3]).

The paper is organized as follows: in the next section we present the
formulation of main result of the article and prove some auxiliary results, in
the second section we present the proof of main result.

2. Formulation of main result and proof of auxiliary results

To formulate and proof the results of the work we introduce some more
notations and definitions.

For any β > −1 we denote πβ(z, αk) as M. M. Djrbashian’s infinite

product with zeros at points of the sequence {αk}
+∞
k=1 (see [2]):

πβ(z, αk) =

+∞∏

k=1

(
1−

z

αk

)
exp(−Uβ(z, αk)), (2.1)

where

Uβ(z, αk) =
2(β + 1)

π

1∫

0

π∫

−π

(1− ρ2)β ln |1− ρeiθ

αk
|

(1− zρe−iθ)β+2
dθρdρ.

We denote πβ,n(z, αk) as infinite product πβ(z, αk) without n-th factor.
As stated in [2], the infinite product πβ(z, αk) is absolutely and uni-

formly convergent in the unit disk D if and only if the series converges:

+∞∑

k=1

(1− |αk|)
β+2 < +∞.

If β + 1 = p ∈ Z+ then product (2.1) takes a form (see [2]):

πp(z, αk) =

+∞∏

k=1

αk(αk − z)

1− αkz
exp

p+1∑

j=1

1

j

(
1− |αk|

2

1− αkz

)j

.

Definition 2.1. The angle with vertex eiθ, contained in D, having opening πδ,
0 < δ < 1, and bisector reiθ , 0 ≤ r < 1, is said to be the Stolz angle Γδ(θ).

The sequence {zj}
+∞
j=1 ⊂ D under following conditions

n(r) = card{zk : |zk| < r} ≤
c

(1− r)α+1
, (2.2)

|πp,n(zn, zj)| ≥ exp
−c0

(1− |zn|)α+1
, c0 > 0, (2.3)

sup
k≥1

{pk} = n,

we associate with the class ∆̃.
The main result of this article is the proof of the following theorems:
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Theorem 2.2. Let {αk} ⊂
n⋃

s=1
Γδ(θs) for certain δ, 0 < δ < 1

α+1 .

If {αk}
∞
1 ∈ ∆̃, then for any sequence {γk}

∞
1 under the condition

|γk| ≤ exp
c0

(1− |αk|)α+1
, k = 1, 2, . . . , c0 > 0, (2.4)

it is possible to construct the function f ∈ S∞
α,a that solve the multiple inter-

polation problem

f (sk−1)(αk) = γk, k = 1, 2, . . . , (2.5)

for all sk ≥ 1.
Conversely, if the multiple interpolation problem (2.5) is solvable for all

sk ≥ 1 and {γk}
∞
1 , satisfying the condition (2.4), then interpolation nodes

{αk}
∞
1 belong to the class ∆̃.

Theorem 2.3. Let {zk} ⊂
n⋃

s=1
Γδ(θs) for certain δ, 0 < δ < 1

α+1 . If {zk}
∞
1 ∈

∆̃, then a necessary and sufficient condition for the existence of function

F ∈ S∞
α with the following principal parts

H(z, zk, ak) =
ak,n

(z − zk)n
+

ak,n−1

(z − zk)n−1
. . .+

ak,1

(z − zk)
, k = 1, 2, . . . (2.6)

is that

|ak,i| ≤ exp
c

(1− |zk|)α+1
, i = 1, n, (2.7)

where c 6= c(i).

The proofs of the theorems are based on the following statements.
Theorem A.(see [13]) Let {αk}

+∞
k=1 be the arbitrary sequence of complex

numbers from D, which is contained in a finite union of Stolz angles, i.e.

{αk} ⊂
n⋃

s=1

Γδ(θs),

with certain 0 < δ < 1
α+1 .

The following statements are equivalent:

1. {αk}
+∞
k=1 is interpolating sequence in S∞

α , α > 0,
2.

n(r) = card{αk : |αk| < r} ≤
c

(1 − r)α+1
,

for some c > 0;
3.

|π′
β(αn, αk)| ≥ exp

−M

(1− |αn|)α+1
,

for some M > 0 and all β > α− 1.

Here and in the sequel, unless otherwise noted, we denote by c, c1, ...,
cn(α, β, ...) some arbitrary positive constants depending on α, β, ..., whose
specific values are immaterial.
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Lemma 2.4. (see [9]) If members of the sequence {αk}
+∞
k=1 are contained in a

finite union of Stolz angles, i.e. {αk} ⊂
n⋃

s=1
Γδ(θs) for certain δ, 0 < δ < 1

α+1 ,

then for any function gα+1(z) =
n∏

s=1

exp C
(1−ze−iθs )α+1 , z ∈ D, the following

estimate is valid

|gα+1(αk)| ≥ c1 exp
c2

(1− |αk|)α+1
, k = 1, 2, ..., (2.8)

where c1, c2 are some positive constants.

We denote

Kρ(αn) :=

{
z ∈ D : |z − αn| < exp

−ρ

(1− |αn|)p+1

}
, |αn| < 1, ρ > 0.

Lemma 2.5. (see [9]) Suppose {αk} ⊂
n⋃

s=1
Γδ(θs) with certain δ, 0 < δ < 1

α+1 ;

then the following estimate is valid:

max
t∈Kρ(αk)

|g−1
α+1(t)| ≤ c̃ · |g−1

α+1(αk)|, k = 1, 2, . . .

Lemma 2.6. For any z ∈ Kρ(αn) the following estimate is valid:

1

2
|mj(αn)| ≤ |mj(z)| ≤

3

2
|mj(αn)|,

where

mj(z) =

(
1− |αj |

2

1− αjz

)
.

The proof of Lemma 2.6 is trivial.

Lemma 2.7. If the sequence {αj} ⊂ D satisfy the condition (2.2), then for

any z ∈ D and p > α the following estimate is valid:

+∞∑

j=1

(
1− |αj |

2

|1− αjz|

)p+1

≤
c

(1− r)α+1
.

Really, if p > α, then from (2.2) it follows that

+∞∑

k=1

(1 − |αk|)
p+1 < +∞. (2.9)

The required estimate is established in the same way as in the work [11].

Lemma 2.8. Suppose {αk} ⊂ ∆̃; then there exists ρ > 0, ρ = ρ(c0), such that

for any z ∈ Kρ(αn), n = 1, 2, ..., the following estimate is valid

|πp,n(z, αk)| ≥ exp
−C

(1 − |αn|)α+1
.
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Proof. Fix a number n ∈ N. Estimate the product πp,n(z, α) in the disk
Kρ(αn). We have

lnπp,n(z, α) =

+∞∑

j=1,j 6=n

lnAj(z, αj) =

=
+∞∑

j=1
j 6=n

[
ln

(
1−

1− |αj |
2

1− αjz

)
+

p∑

s=1

1

s

(
1− |αj |

2

1− αjz

)s
]
,

where a principal branch of the logarithmic function is taken.

We split the sum Σ =
+∞∑
j=1
j 6=n

lnAj(z, αj) into two parts:

Σ = Σ1 +Σ2,

where

Σ1 =
∑

|mj(z)|≤
1
2

lnAj(z, αj),

Σ2 =
∑

|mj(z)|>
1
2

lnAj(z, αj).

It is clear that

Σ1 =

+∞∑

j=1
j 6=n

+∞∑

s=p+1

1

s
(mj(z))

s =

+∞∑

j=1
j 6=n

(mj(z))
p+1 ·

(
+∞∑

s=p+1

1

s
(mj(z))

s−p−1

)
.

Therefore,we have

|Σ1| =

∣∣∣∣∣∣

∑

|mj(z)|≤
1
2

lnAj(z, αj)

∣∣∣∣∣∣
≤

≤
∑

|mj(z)|≤
1
2

|mj(z)|
p+1

+∞∑

s=p+1

1

s
|mj(z)|

s−p−1 ≤

≤
∑

|mj(z)|≤
1
2

|mj(z)|
p+1

+∞∑

k=0

1

2k
≤

≤ 2
∑

|mj(z)|≤
1
2

(1 − |αj |
2)p+1

|1− αjz|p+1
.

Using Lemma 2.7, we get

|Σ1| ≤
c1

(1− r)α+1
.

Now we estimate the sum Σ2. First we remark that if |mj(z)| >
1
2 , then

|mj(αn)| >
1
2 in the disk Kρ(αn) for sufficiently large ρ. We obtain a lower
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bound for ln
∣∣∣ Aj(z,αj)
Aj(αn,αj)

∣∣∣:

ln

∣∣∣∣
Aj(z, αj)

Aj(αn, αj)

∣∣∣∣ =
[
ln

|z − αj |

|αn − αj |
+ ln

∣∣∣∣
1− αjαn

1− αjz

∣∣∣∣
]
+

+

p∑

s=1

1

s
ℜ

(
1− |αj |

2

1− αjz

)s

−

p∑

s=1

1

s
ℜ

(
1− |αj |

2

1− αjαn

)s

.

Choose ρ sufficiently large to satisfy the following inequality

1

2
≤

∣∣∣∣
z − αj

αn − αj

∣∣∣∣ =
∣∣∣∣1 +

z − αn

αn − αj

∣∣∣∣ ≤
3

2
.

Taking into account Lemma 2.6, we obtain:

ln

∣∣∣∣
Aj(z, αj)

Aj(αn, αj)

∣∣∣∣ ≥ − ln 2 + |mj(z)|
p+1×

×

[
p∑

s=1

1

s
ℜ(mj(z))

s ·
1

|mj(z)|p+1
−

p∑

s=1

1

s
ℜ(mj(αn))

s ·
1

|mj(z)|p+1

]
.

Since |ℜw| ≤ |w|, w ∈ C, we have:

ln

∣∣∣∣
Aj(z, αj)

Aj(αn, αj)

∣∣∣∣ ≥ − ln 2− |mj(z)|
p+1×

×

[
p∑

s=1

1

s

1

|mj(z)|p+1−s
+

p∑

s=1

1

s

1

|mj(αn)|p+1−s

]

Since |mj(z)| >
1
2 and |mj(αn)| >

1
2 in the disk Kρ(αn), then the last

inequality is equivalent to

ln

∣∣∣∣
Aj(z, αj)

Aj(αn, αj)

∣∣∣∣ ≥ − ln 2− |mj(z)|
p+1 ×

p∑

s=1

1

s
2 · 2p+1−s ≥

≥ − ln 2− 2p+2|mj(z)|
p+1 ×

p∑

s=1

1

s · 2s
,

whence we conclude:

ln

∣∣∣∣
Aj(z, αj)

Aj(αn, αj)

∣∣∣∣ ≥ −|mj(z)|
p+1 ·

(
ln 2

|mj(z)|p+1
+ 2p+2 − 4

)
≥

≥ −|mj(z)|
p+1 ·

(
2p+1 ln 2 + 2p+2 − 4

)
,

i.e.

ln

∣∣∣∣
Aj(z, αj)

Aj(αn, αj)

∣∣∣∣ ≥ −c2(p)|mj(z)|
p+1.

Now by (2.3), we obtain

ln |Aj(z, αj)| ≥ −c2(p)

∣∣∣∣
1− |αj |

2

1− αjz

∣∣∣∣
p+1

−
c0

(1− |αn|)p+1
.
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Integrating the estimates for the sum Σ1 and Σ2, we obtain:

+∞∑

j=1
j 6=n

ln |Aj(z, αj)| =
∑

|mj(z)|≤
1
2

ln |Aj(z, αj)|+
∑

|mj(z)|>
1
2

ln |Aj(z, αj)| ≥

≥ −
c1

(1− |αn|)α+1
−

c2(p)

(1− |αn|)α+1
−

c0

(1 − |αn|)α+1
.

Finally, we conclude:

ln |πp,n(z, αn)| =
+∞∑

j=1
j 6=n

| lnAj(z, αj)| ≥
−C

(1 − |αn|)α+1
.

�

To formulate and proof further results, we introduce some more nota-
tions.

First we remark that the function πp,k(z) ·
(

1−|αk|
2

1−αkz

)p+pk+1

is analytic

in D and is non-zero in the certain neighborhood of the point z = αk for all
p > α. For any k ∈ N we consider the function

τk(z) =

{
πp,k(z) ·

(
1− |αk|

2

1− αkz

)pk+1

· gα+1(z)

}−1

,

where gα+1(z) =
n∏

s=1
exp C

(1−ze−iθs )α+1 and C is sufficient large number. It

can be argued that in the sufficient small ε-neighborhood of the point αk the
following expansion is valid:

τk(z) =
∞∑

ν=0

aν(αk)(z − αk)
ν , |z − αk| < ε,

where aν(αk) =
1
ν!

dν

dzν

[{
πp,k(z) ·

(
1−|αk|

2

1−αkz

)p+pk+1

· gα+1(z)

}−1
]

z=αk

.

Lemma 2.9. If {αk}
∞
1 ∈ ∆̃, then for the coefficients of expansion aν(αk) the

following estimates are valid

|aν(αk)| ≤ a(ν), 0 ≤ ν ≤ pk, k = 1, 2, . . . ,

where a(ν) depends on the ν.

The proof of the Lemma 2.9 is conducted in a standard way with using
Lemma 2.8 (see [10]).

Consider the polynomials

qk(z) =

pk−sk∑

ν=0

aν(αk)(z − αk)
ν , k = 1, 2, . . .
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Now we define the system of analytic functions in D:

Ω̃k(z) =
(z − αk)

sk−1qk(z)

(sk − 1)!τk(z)
. (2.10)

It obvious that

Ω̃k(z) = gα+1(z)
πp,k(z)

(sk − 1)!
·

(
1− |αk|

2

1− αkz

)p+pk+1

·

pk−sk∑

ν=0

aν(αk)(z − αk)
ν+sk−1,

k = 1, 2, . . . , where p > α.
We note that the method of constructing such system of functions was

first proposed by M. Djrbashian in [3].

Lemma 2.10. Functions of the system (2.10) have the following interpolating

properties:

Ω̃
(r)
k (αk) =

{
1, r = sk − 1;

0, r 6= sk − 1, 0 ≤ r ≤ pk − 1.

3. Proof of main result

Proof. of Theorem 2.2.

Let interpolation nodes satisfy the following condition: {αk} ⊂
n⋃

s=1
Γδ(θs)

with certain 0 < δ < 1
α+1 and {αk}

∞
1 ∈ ∆̃. For any {γk}

∞
1 under condition

(2.4) we construct the interpolation function f(z) as follows:

f(z) = gα+1(z)×

+∞∑

k=1

Ω̃k(z)
γk

gα+1(αk)
= gα+1(z) · ϕ(z), z ∈ D,

where

gα+1(z) =

n∏

s=1

exp
C

(1− ze−iθs)α+1
, z ∈ D. (3.1)

Using Lemma 2.9, we get: f (sk−1)(αk) = γk, k = 1, 2, . . .
Now we prove that the function f(z) belongs to the class S∞

α,a. We
obtain an upper estimate on ϕ(z). Since the interpolation nodes satisfy the

following condition: {αk} ⊂
n⋃

s=1
Γδ(θs), and the elements of the sequence

{γk}
+∞
1 satisfy the condition (2.4), then splitting the sum ϕ(z) on n parts

and applying to each of them Lemma 2.4, we obtain:

|ϕ(z)| =

n∑

s=1

∑

αk∈Γδ(θs)

∣∣∣∣
γk

gα+1(αk)

∣∣∣∣ · |Ω̃k(z)| ≤

≤ c0

n∑

s=1

∑

αk∈Γδ(θs)

exp
δ − C

(1− |αk|)α+1
· |Ω̃k(z)|.
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Choosing a positive constant C such that δ−C < 0, we obtain the following
estimate:

exp
δ − C

(1− |αk|)α+1
≤ 1,

for all k = 1, 2, ...
So, we have:

|ϕ(z)| ≤ c0

+∞∑

k=1

|Ω̃k(z)|.

We obtain an upper estimate of the function Ω̃k(z) for all k = 1, 2, . . . Recall
that

|Ω̃k(z)| = |gα+1(z)|
|πp,k(z)|

(sk − 1)!
·

(
1− |αk|

2

|1− αkz|

)p+pk+1

×

×

∣∣∣∣∣

pk−sk∑

ν=0

aν(αk)(z − αk)
ν+sk−1

∣∣∣∣∣ .

Note that
(
1− |αk|

2

|1− αkz|

)p+pk+1

|z − αk|
sk−1+ν ≤

(1− |αk|
2)p+pk+1

|1− αkz|p+pk+2−sk−ν
=

=
(1− |αk|

2)p+1 · (1− |αk|
2)pk

|1− αkz|p+pk+2−sk−ν
≤

(1− |αk|
2)p+1

|1− αkz|p+2
.

But
(1− |αk|

2)p+1

|1− αkz|p+2
≤

(1 − |αk|
2)p+1

(1− |z|)p+2
.

Therefore

|ϕ(z)| ≤ c0

+∞∑

k=1

|Ω̃k(z)| ≤ c0

+∞∑

k=1

|gα+1(z)|
|πp,k(z)|

(sk − 1)!
·
(1 − |αk|

2)p+1

(1− |z|)p+2
.

Taking into account a well-known estimate of M. M. Djrbashian’s infi-
nite product (see [9]):

ln+ |πp,k(z, αj)| ≤ cp

+∞∑

j=1

(
1− |αj |

|1− αjz|

)p+1

,

we get:

|ϕ(z)| ≤ c0|gα+1(z)| · exp




cp
+∞∑

j=1

(
1− |αj |

|1− αjz|

)p+1



×

×
1

(1− |z|)p+2

+∞∑

k=1

1

(sk − 1)!
(1 − |αk|

2)p+1.

From (2.2) it follows that (2.9) is valid and therefore

|ϕ(z)| ≤ c0|gα+1(z)| · exp




cp
+∞∑

j=1

(
1− |αj |

|1− αjz|

)p+1



 ·
c3

(1− |z|)p+2
.



Multiple interpolation and principal parts for Nevanlinna type spaces 11

So the function f satisfies the following estimate:

|f(z)| ≤ c0|gα+1(z)|
2 · exp




cp
+∞∑

j=1

(
1− |αj |

|1− αjz|

)p+1



 ·
c3

(1− |z|)p+2
.

Using this estimate, we prove that the function f belongs to the class S∞
α,a,

that is

T (r, f) =
1

2π

π∫

−π

ln+ |f(reiθ)|dθ ≤
C

(1− r)α
,

where α > 0, C > 0.
We have:

T (r, f) ≤ const ·

+∞∑

j=1

π∫

−π

(
1− |αj |

|1− αjreiθ |

)p+1

dθ + 2

π∫

−π

ln+ |gα+1(re
iθ)|dθ+

+2π ln
c

(1− r)p+2
.

We estimate each term in this sum separately. As stated in [12] (see also
[11]),

+∞∑

j=1

π∫

−π

(
1− |αj |

|1− αjreiθ |

)p+1

dθ ≤
c

(1 − r)α
, (3.2)

for all p > α.
Further, from (3.1) we have:

π∫

−π

ln+ |gα+1(re
iθ)|dθ ≤

n∑

s=1

π∫

−π

Cdθ

|1− rei(θ−θs)|α+1
.

Applying elementary estimates, we obtain:
π∫

−π

ln+ |gα+1(re
iθ)|dθ ≤

c3

(1 − r)α
. (3.3)

We conclude from (3.2), (3.3) that the function f belongs to the class S∞
α,a.

The converse statement follows directly from the result of Shamoyan
and Rodikova (2014) (see [13]).

�

Proof. of Theorem 2.3.
Necessity. Suppose that there exists a function F ∈ S∞

α with the principal
parts of the form (2.6), that is

F (z) = H(z, zk, ak) + ψ(z),

where the function ψ is holomorphic in some neighborhood of zk, k = 1, 2, . . .
For a given fixed n ∈ N we multiply this equality by the product of πn

p (z, zj):

F (z) · πn
p (z, zj) = H(z, zk, ak) · π

n
p (z, zj) + ψ(z) · πn

p (z, zj).
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It is obvious that the singular points of the function F are the members of
the sequence {zk}, so F · πn

p ∈ H(D). Since F ∈ S∞
α and πn

p ∈ S∞
α for all

p > α, we have F · πn
p ∈ S∞

α . Thus

T (r, F · πn
p ) =

1

2π

π∫

−π

ln+ |F (reiθ) · πn
p (re

iθ , zj)|dθ ≤
C(n)

(1− r)α
,

where α > 0, p > α, C > 0.

We denote Φn = F · πn
p . We find the value of the function Φ in the

points of the sequence {zk}:

Φn(zk) = lim
z→zk

Φn(z) = lim
z→zk

F (z) · πn
p (z, zj) =

= lim
z→zk

(
ak,n

(z − zk)n
+

ak,n−1

(z − zk)n−1
. . .+

ak,1

(z − zk)

)
·πp

n(z, zj)+ψ(z)·π
n
p (z, zj) =

= lim
z→zk

ak,n · πn
p (z, zj)

(z − zk)n
= ak,n · π′n

p (zk).

Whence,

ak,n =
Φn(zk)

π′n
p (zk)

.

Since Φn ∈ S∞
α , we have:

|Φn(zk)| ≤ exp
c

(1− |zk|)α+1
, k = 1, 2, ... (3.4)

As stated in [13] (see Theorem A), if {zk}
∞
1 ∈ ∆̃, then the following estimate

is valid:

|π′n
p (zk, zj)| ≥ exp

−M

(1 − |zk|)α+1
, (3.5)

for all k = 1, 2, ...

Taking into account the estimate (3.4), (3.5), we obtain:

|ak,n| ≤ exp
c0(n)

(1 − |zk|)α+1
, i = 1, n. (3.6)

We prove the similar estimates on the coefficients ak,i for all i < n.
Represent the function F as

F (z) =
n∑

l=1

ak,l

(z − zk)l
+ ψ(z).

We have

F (z)−

n∑

l=1
l 6=i

ak,l

(z − zk)l
=

ak,i

(z − zk)i
+ ψ(z).
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Multiply this equality by the product of πn
p (z, zj):

Φi(z) = F (z) · πn
p (z, zj)−

n∑

l=1
l 6=i

ak,l

(z − zk)l
· πn

p (z, zj) =

=
ak,i

(z − zk)i
· πn

p (z, zj) + ψ(z) · πn
p (z, zj).

Obviously, Φi ∈ S∞
α,a.

For a fixed i ∈ N we denote Ψi(z) =
Φi(z)

(z−zk)n−i , z ∈ D:

Ψi(z) = F (z) ·
πn
p (z, zj)

(z − zk)n−i
−

n∑

l=1

ak,l

(z − zk)l
·
πn
p (z, zj)

(z − zk)n
. (3.7)

It is clear that Ψi ∈ S∞
α,a. Find the value of the function Ψi in the points of

the sequence {zk}:

Ψi(zk) = lim
z→zk

Ψi(z) = lim
z→zk

ak,i

(z − zk)n
· πn

p (z, zj) + ψ(z) ·
πn
p (z, zj)

(z − zk)n−i
=

= ak,i · π
′n
p (zk).

Whence,

ak,i =
Ψi(zk)

π′n
p (zk)

.

Since Ψi ∈ S∞
α,a, we have

|Ψi(zk)| ≤ exp
c

(1− |zk|)α+1
, k = 1, 2, ...,

where c 6= c(i), as can be seen from the representation (3.7).
Applying estimate (3.5), we obtain:

|ak,i| ≤ exp
c1(n)

(1− |zk|)α+1
, i < n. (3.8)

Sufficiency. The proof is by induction on i. For i = 1 we denote

ck,1 = ak,1 · π
′n
p (zk, zj), k = 1, 2, ...

By the induction hypothesis,

|ak,1| ≤ exp
c

(1 − |zk|)α+1
. (3.9)

Further, as stated in [10], the class S∞
α is invariant under the differenti-

ation operator, so π′
p ∈ S∞

α,a for all p > α, that means the following estimate
is valid:

|π′n
p (zk, zj)| ≤ exp

c1

(1 − |zk|)α+1
. (3.10)

Integrating the estimates (3.9), (3.10), we obtain:

|ck,1| ≤ exp
c2

(1 − |zk|)α+1
, k = 1, 2, ...
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By Theorem A there exists a function Φ ∈ S∞
α,a, such that Φ(zk) = ck,1, k =

1, 2, ...

Let F (z) = Φ(z)(z−zk)
n−1

πn
p (z,zj)

. Obviously, F ∈ S∞
α . Function F has simple

poles in the points of the sequence {zk}
+∞
k=1. Therefore the function F can be

expressed as

F (z) =
a′k,1

(z − zk)
+ ψ(z),

where ψ is holomorphic function in certain neighborhood of the point zk,
k = 1, 2, . . .

Find the coefficients a′k,1:

a′k,1 = lim
z→zk

(F (z)− ψ(z))(z − zk) =
Φ(zk)

π′n
p (zk, zj)

.

But Φ(zk) = ck,1, so a
′
k,1 = ak,1. It means that for i = 1 the function F is

required.

Now we assume the validity of the theorem in case i = n− 1. It means
that there exists a function F1, such that

F1(z) =
a′′k,n−1

(z − zk)n−1
. . .+

a′′k,1

(z − zk)
+ ψ(z),

where ψ is holomorphic function in certain neighborhood of the point z = zk,
and a Laurent coefficients satisfy (2.7).

We prove the statement of the theorem for i = n. Let

ck,n = ak,n · π′n
p (zk, zj), k = 1, 2, ... (3.11)

By hypothesis, we have:

|ak,n| ≤ exp
c2

(1 − |zk|)α+1
.

As stated in Theorem A, there exists a function Φ ∈ S∞
α,a, such that Φ(zk) =

ck,n, k = 1, 2, ...

Let F (z) = Φ(z)
πn
p (z,zj)

. Since

T (r, F ) ≤ T (r,Φ) + T

(
r,

1

πn
p

)
,

then taking into account that function Φ belongs to the class S∞
α,a and the

Nevanlinna equality of the balance, we conclude that F ∈ S∞
α .

Function F has poles of order n in the points of the sequence {zk}
+∞
k=1.

Therefore the function F can be expressed as

F (z) =
Φ(z)

πn
p (z)

=
a′k,n

(z − zk)n
+

a′k,n−1

(z − zk)n−1
+ . . .+

a′k,1

(z − zk)
+ ψ(z),
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where ψ is holomorphic function around the point zk. Find the coefficients
a′k,n, k = 1, 2, . . .

a′k,n = lim
z→zk

F (z)(z − zk)
n = lim

z→zk

(z − zk)
n · Φ(z)

πn
p (z, zj)

=
Φ(zk)

π′n
p (zk)

.

Using that Φ(zk) = ck,n, k = 1, 2, . . . and based on (22) we conclude: a′k,n =
ak,n ,k = 1, 2, . . . We write the expansion of the function Φ in the Taylor
series at the point z = zk , k = 1, 2, . . .,

Φ(z) = Φ(zk) +

+∞∑

j=1

Φ(j)(zk) · (z − zk)
j

j!

On the other hand,

Φ(z) =
a′k,n

(z − zk)n
πn
p (z, zj) + . . .+

a′k,1

(z − zk)
πn
p (z, zj) + ψ(z)πn

p (z, zj).

Thus, using the latest representation for Φ, we have

Φ(zk)−
a′k,n

(z − zk)n
πn
p (z, zj) +

Φ′(zk) · (z − zk)

1!
+

Φ′′(zk) · (z − zk)
2

2!
+ . . . =

=
a′k,n−1

(z − zk)n−1
πn
p (z, zj) + . . .+

a′k,1

(z − zk)
πn
p (z, zj) + ψ(z)πn

p (z, zj).

Divide both sides of this equality by the expression (z − zk):
(
Φ(zk)−

a′k,n

(z − zk)n
πn
p (z, zj)

)
·

1

(z − zk)
+

Φ′(zk)

1!
+

Φ′′(zk) · (z − zk)

2!
+ . . . =

=
a′k,n−1

(z − zk)n
πn
p (z, zj) + . . .+

a′k,1

(z − zk)2
πn
p (z, zj) +

ψ(z)πn
p (z, zj)

(z − zk)
.

Limiting z → zk , we get:

Φ′(zk)

1!
= a′k,n−1 · π

′n
p (zk).

In a similar way we find that

a′k,i · π
′n
p (zk) =

Φ(n−i)(zk)

(n− i)!
, i < n.

Since the class S∞
α is invariant under the differentiation operator, we obtain

|a′k,i| ≤ exp
c

(1− |zk|)α+1
, i = 1, 2, . . . , n− 1

But

|ak,i| ≤ exp
c0

(1− |zk|)α+1
, i = 1, 2, . . . , n− 1,

hence

|ak,i − a′k,i| ≤ exp
c1

(1− |zk|)α+1
, i = 1, 2, . . . , n− 1.
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By the induction hypothesis, there exists a function F1, expressed in the form

F1(z) =
a′′k,n−1

(z − zk)n−1
+ . . .+

a′′k,1

(z − zk)
+ ψ1(z),

where a′′k,i = ak,i − a′k,i, i = 1, 2, . . . , n − 1, ψ1(z) is analytic function in
some neighborhood of the point z = zk, k = 1, 2, . . . Consider the function
F +F1 ∈ S∞

α . Based on the above, we may conclude that the function F +F1

has the following principal parts:

H(z, zk, ak) =
ak,n

(z − zk)n
+ . . .+

ak,1

(z − zk)
, k = 1, 2, . . .

�
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