Fourier Transform and Quasi-analytic Classes of Functions of Bounded Type on Tubular Domains*

F. A. Shamoyan

Received April 29, 2016
Abstract. A condition for a function of bounded type to belong to the Hardy class H^{1} in terms of the Fourier transform of the boundary values of this function on \mathbb{R}^{n} is found. Applications of the obtained result to the theories of Hardy classes and of quasi-analytic classes of functions are given.
KEY WORDS: Fourier transform, quasi-analytic classes, pluriharmonic function, tubular domain.

1. Let

$$
\mathbb{C}_{+}^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \operatorname{Im} z_{j}>0, j=1, \ldots, n\right\}
$$

and let

$$
N\left(\mathbb{C}_{+}^{n}\right)=\left\{f: f(z)=h_{1}(z) / h_{2}(z), h_{j}(z) \in H^{\infty}\left(\mathbb{C}_{+}^{n}\right), j=1,2, h_{2}(z) \neq 0, z \in \mathbb{C}_{+}^{n}\right\}
$$

be the class of functions of bounded type on \mathbb{C}_{+}^{n}. In the one-dimensional case, the class $N\left(\mathbb{C}_{+}\right)$ coincides with the Nevanlinna class in the upper half-plane $\mathbb{C}_{+}:=\mathbb{C}_{+}^{1}$ (see [1, Sec. II.5]); for $n \geqslant 2$, the Nevanlinna class, i.e., the class of functions f for which $\ln |f|$ has an n-harmonic majorant, is fundamentally different from $N\left(\mathbb{C}_{+}^{n}\right)$ (see [2, Theorem 4.4.1], [3, p. 165]). This can be seen from the following simple considerations: in the one-dimensional case, the zero sets of bounded analytic functions and functions in the Nevanlinna class both on the unit disk U and in the half-plane are described by Blaschke's classical condition. In the multidimensional case $(n \geqslant 2)$, for any p, $0<p<+\infty$, there exists a nontrivial function f in the Hardy class $H^{p}\left(U^{n}\right)$ on the unit polydisk U^{n} such that its zero set $Z_{f}=\{z: f(z)=0\}$ is a uniqueness set for the class of bounded analytic functions on U^{n} (see [2, p. 61]). This is also true for $H^{\infty}\left(\mathbb{C}_{+}^{n}\right)$. Obviously, the corresponding function f belongs to the Nevanlinna class but does not belong to the class of analytic functions of bounded type on \mathbb{C}_{+}^{n}. In the same way, by using a property of the zero sets of functions in the Hardy classes on the ball (see [3, p. 165]), it can be shown that the class of functions of bounded type differs from the Nevanlinna class on the ball. As is known, if f belongs to the Smirnov class $N^{+}\left(\mathbb{C}_{+}^{n}\right)$ (see [2, Theorem 3.3.5] and [4, p. 246]) and its boundary value on \mathbb{R}^{n} belongs to $L^{1}\left(\mathbb{R}^{n}\right)$, then f belongs to the Hardy class $H^{1}\left(\mathbb{C}_{+}^{n}\right)$ and, therefore, the Fourier transform $\hat{f}(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(t) e^{-i t x} d t$ of this function vanishes on $\mathbb{R}^{n} \backslash \mathbb{R}_{+}^{n}$. The simple example of the function

$$
f_{a}(z)=\prod_{j=1}^{n}\left(i+z_{j}\right)^{-s} \exp \left(-i a_{j} z_{j}\right)
$$

where $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}_{+}^{n}, a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}_{+}^{n}$, and $s>1$, shows that this assertion does not hold for $N\left(\mathbb{C}_{+}^{n}\right)$.

For $n=1$, it was proved in [5] that if $\hat{f}(x) \rightarrow 0$ sufficiently rapidly as $x \rightarrow-\infty$, then the function \hat{f} identically vanishes on \mathbb{R}_{-}. Moreover, a necessary and sufficient condition on the rate of decrease for this assertion to hold was found.

[^0]A substantial role in the proof of this result was played by a factorization of functions in $N\left(\mathbb{C}_{+}\right)$(see $[1$, Sec. II.5, (5.10)]). It is well known that, for $n \geqslant 2$, there are no factorizations (see [2, Theorem 4.4.1]). In this paper, we state a similar assertion for all $n \geqslant 1$; its proof does not use factorization. We also give several interesting, in our view, applications to the theories of Hardy classes and of quasi-analytic classes of functions.
2. In what follows, we use the following standard notation (see, e.g., [3] and [4]). For $z=$ $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, we set $\|z\|=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}$, and for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$, we set $|k|=$ $k_{1}+\cdots+k_{n}$. Let $M(r)=M\left(r_{1}, \ldots, r_{n}\right)$, where $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{+}^{n}$, be a positive function monotonically increasing with respect to each variable $r_{j} \in \mathbb{R}_{+}, 1 \leqslant j \leqslant n$, for fixed $r^{\prime}=\left(r_{1}, \ldots, r_{j-1}, r_{j+1}, r_{n}\right) \in \mathbb{R}_{+}^{n-1}$ and satisfying the condition

$$
\lim _{\|r\| \rightarrow+\infty} \frac{\ln \|r\|}{\ln M(r)}=0
$$

We set

$$
\begin{gathered}
M_{m}^{(j)}=\sup _{x \in \mathbb{R}_{+}} \frac{x^{m}}{M\left(r_{1}, \ldots, r_{j-1}, x, r_{j+1}, \ldots, r_{n}\right)}, \quad m \in \mathbb{Z}_{+}, j=1, \ldots, n, \\
T_{j}(t)=\sup _{m \geqslant 1} \frac{t^{m}}{M_{m}^{(j)}}, \quad t \in \mathbb{R}_{+} .
\end{gathered}
$$

By $\mathbb{R P}\left(\mathbb{R}^{n}\right)$ we denote the class of functions $f \in L^{1}\left(\mathbb{R}^{n}\right)$ for which the Cauchy-type integral identically vanishes on $\mathbb{C}^{n} \backslash\left\{\mathbb{C}_{+}^{n} \cup \mathbb{C}_{-}^{n}\right\}$ if $n \geqslant 2$ and on $L^{1}(\mathbb{R})$ if $n=1$.

Theorem 1. Suppose that $f \in N\left(\mathbb{C}_{+}^{n}\right)$, the boundary values of f on \mathbb{R}^{n} belong to the class $\mathbb{R P}\left(\mathbb{R}^{n}\right)$, and

$$
\begin{equation*}
\varlimsup_{\|y\| \rightarrow+\infty} \frac{\ln |f(i y)|}{\|y\|} \leqslant 0 \tag{1}
\end{equation*}
$$

Suppose also that the Fourier transform of the function f is bounded as

$$
\begin{equation*}
|\hat{f}(-x)| \leqslant \frac{1}{M(x)}, \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n} \tag{2}
\end{equation*}
$$

If, in addition,

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\ln T_{j}(r)}{r^{3 / 2}} d r=+\infty, \quad j=1, \ldots, n \tag{3}
\end{equation*}
$$

then $\hat{f}(x)=0$ for all $x \in \mathbb{R}^{n} \backslash \mathbb{R}_{+}^{n}$, and f belongs to the Hardy class $H^{1}\left(\mathbb{C}_{+}^{n}\right)$. Conversely, if

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{n}\right)=\exp \left(\sum_{j=1}^{n} P_{j}\left(x_{j}\right)\right), \quad \frac{P_{j}^{\prime}(t) t}{P_{j}(t)} \nearrow+\infty \quad \text { as } t \rightarrow+\infty, j=1, \ldots, n \tag{4}
\end{equation*}
$$

and at least one of the integrals in (3) converges, then there exists a function $f \in N\left(\mathbb{C}_{+}^{n}\right) \cap \mathbb{R} P\left(\mathbb{R}^{n}\right)$ such that \hat{f} satisfies (2) but $\hat{f}(x) \neq 0$ for $x \in \mathbb{R}_{-}^{n}$ if $f \notin H^{1}\left(\mathbb{C}_{+}^{n}\right)$.

Remark 1. For the case where the majorant M has the form (4), the author proved Theorem 1 by a different method in his previous paper [6]. We also mention that Theorem 1 is essentially used in the proofs of Theorems 2 and 3.

Remark 2. The example of the function $f\left(z_{1}, z_{2}\right)=\frac{\varphi\left(z_{1}\right)}{\left(i+z_{1}\right)^{2}\left(i+z_{2}\right)^{2} S\left(z_{2}\right)}, z=\left(z_{1}, z_{2}\right) \in \mathbb{C}_{+}^{2}$, where $\varphi \in H^{\infty}\left(\mathbb{C}_{+}\right)$and S is any inner function in \mathbb{C}_{+}, shows that the condition that the boundary values of f belong to the class $\mathbb{R P}\left(\mathbb{R}^{n}\right)$ is necessary for the validity of Theorem 1.

It follows from the form of the function f_{a} that there exists a function $g \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap N\left(\mathbb{C}_{+}^{n}\right) \cap$ $L^{1}\left(\mathbb{R}^{n}\right)$ such that $\lim _{|x| \rightarrow+\infty} \partial^{k} g(x) / \partial x^{k}=0$ for any $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $\int_{\mathbb{R}^{n}}|g(x+i y)| d x \geqslant$ $c_{0} \exp (a \cdot y), a=\left(a_{1}, \ldots, a_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}, c_{0}>0$. Nevertheless, the following theorem is valid.

Theorem 2. Suppose that $M=\left\{M_{s}\right\}_{s=1}^{+\infty}$ is a monotonically increasing sequence of positive numbers,

$$
\begin{gather*}
C^{\infty}(M)=\left\{g \in C^{\infty}\left(\mathbb{R}^{n}\right):\left|\frac{\partial^{|k|} g\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1}^{k_{1}} \cdots \partial x_{n}^{k_{n}}}\right| \leqslant A^{|k|} M_{|k|}, x \in \mathbb{R}^{n}\right\}, \\
T(r)=\sup _{s \geqslant 1} \frac{r^{s}}{M_{s}}, \quad r \in \mathbb{R}_{+}, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
f \in N\left(\mathbb{C}_{+}^{n}\right) \cap \mathbb{R P}\left(\mathbb{R}^{n}\right) \cap \mathbb{C}^{\infty}(M) \tag{6}
\end{equation*}
$$

If condition (1) holds and

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\ln T(r)}{r^{3 / 2}} d r=+\infty \tag{7}
\end{equation*}
$$

then $f \in H^{1}\left(\mathbb{C}_{+}^{n}\right)$ and $\int_{\mathbb{R}^{n}}|f(x+i y)| d x \leqslant \int_{\mathbb{R}^{n}}|f(x)| d x$ for all $y \in \mathbb{R}_{+}^{n}$.
Conversely, if the integral (7) converges or condition (1) is violated, then there exists a function f satisfying (6) but not belonging to the class $H^{1}\left(\mathbb{C}_{+}^{n}\right)$.

The following theorem refines Salinas' classical theorem [7] for $n=1$.
Theorem 3. Suppose that $g \in C^{\infty}(M)$ and there exists a function $f \in N\left(\mathbb{C}_{+}^{n}\right) \cap \mathbb{R P}\left(\mathbb{R}^{n}\right)$ satisfying condition (1) and such that $\lim _{|y| \rightarrow 0} f(x+i y)=g(x)$ almost everywhere on \mathbb{R}^{n}. Suppose also that $T(r)$ is defined by (5), provided that condition (7) holds, and

$$
\begin{equation*}
\frac{\partial^{|k|} g\left(x_{0}\right)}{\partial x^{k}}=0, \quad k \in \mathbb{Z}_{+}^{n} \tag{8}
\end{equation*}
$$

for some $x_{0} \in \mathbb{R}^{n}$. Then $g(x)=0$ for all $x \in \mathbb{R}^{n}$.
Conversely, if the integral (7) converges, then there exists a function $g \in C_{A}^{\infty}(M)=C^{\infty}\left(\mathbb{C}_{+}^{n} \cup\right.$ $\left.\mathbb{R}^{n}\right) \cap H\left(\mathbb{C}_{+}^{n}\right)$ such that condition (8) holds but g does not identically vanish on \mathbb{R}^{n}; here $H\left(\mathbb{C}_{+}^{n}\right)$ denotes the set of all analytic functions in \mathbb{C}_{+}^{n}.

As mentioned above, the proofs of Theorems 2 and 3 are based on Theorem 1, and the proof of the latter reduces to solving the weak invertibility problem for bounded analytic functions in Bergman-type weight spaces in \mathbb{C}_{+}^{n}. This problem is solved in these spaces by the method of weighted approximation by algebraic polynomials (see [8]).

The author thanks the referee for constructive comments.

References

[1] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York-London, 1981; Revised First Edition, Springer-Verlag, New York, 2007.
[2] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
[3] A. B. Aleksandrov, in: Complex Analysis-Many Variables-2 [in Russian], Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki, Fundamental'nye Napravleniya, vol. 8, VINITI, Moscow, 1985, 115-190.
[4] V. S. Vladimirov and A. G. Sergeev, in: Complex Analysis-Many Variables-2 [in Russian], Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki, Fundamental'nye Napravleniya, vol. 8, VINITI, Moscow, 1985, 191-266.
[5] F. A. Shamoyan, Algebra i Analiz, 20:4 (2008), 218-240; English transl.: St. Petersburg Math. J., 20:4 (2009), 665-680.
[6] F. A. Shamoyan, Sibirsk. Mat. Zh., 57:6 (2016), 1403-1421; English transl.: Siberian Math. J., 57:6 (2016), 1100-1116.
[7] R. B. Salinas, Rev. Acad. Ciencias Madrid, 49 (1955), 331-368.
[8] F. A. Shamoyan, Mat. Sb., 193:6 (2002), 143-162; English transl.: Russian Acad. Sci. Sb. Math, 193:6 (2002), 925-943.

Bryansk State University, Bryansk, Russia
e-mail: shamoyanfa@yandex.ru

[^0]: *This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 1.1704.2014K).

