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Abstract. A condition for a function of bounded type to belong to the Hardy class H1 in terms
of the Fourier transform of the boundary values of this function on R

n is found. Applications of
the obtained result to the theories of Hardy classes and of quasi-analytic classes of functions are
given.
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1. Let

C
n
+ = {z = (z1, . . . , zn) ∈ C

n : Im zj > 0, j = 1, . . . , n},
and let

N(Cn
+) = {f : f(z) = h1(z)/h2(z), hj(z) ∈ H∞(Cn

+), j = 1, 2, h2(z) �= 0, z ∈ C
n
+}

be the class of functions of bounded type on C
n
+. In the one-dimensional case, the class N(C+)

coincides with the Nevanlinna class in the upper half-plane C+ := C
1
+ (see [1, Sec. II.5]); for n � 2,

the Nevanlinna class, i.e., the class of functions f for which ln |f | has an n-harmonic majorant, is
fundamentally different from N(Cn

+) (see [2, Theorem 4.4.1], [3, p. 165]). This can be seen from
the following simple considerations: in the one-dimensional case, the zero sets of bounded analytic
functions and functions in the Nevanlinna class both on the unit disk U and in the half-plane
are described by Blaschke’s classical condition. In the multidimensional case (n � 2), for any p,
0 < p < +∞, there exists a nontrivial function f in the Hardy class Hp(Un) on the unit polydisk
Un such that its zero set Zf = {z : f(z) = 0} is a uniqueness set for the class of bounded analytic
functions on Un (see [2, p. 61]). This is also true for H∞(Cn

+). Obviously, the corresponding function
f belongs to the Nevanlinna class but does not belong to the class of analytic functions of bounded
type on C

n
+ . In the same way, by using a property of the zero sets of functions in the Hardy classes

on the ball (see [3, p. 165]), it can be shown that the class of functions of bounded type differs from
the Nevanlinna class on the ball. As is known, if f belongs to the Smirnov class N+(Cn

+) (see [2,
Theorem 3.3.5] and [4, p. 246]) and its boundary value on R

n belongs to L1(Rn), then f belongs

to the Hardy class H1(Cn
+) and, therefore, the Fourier transform f̂(x) = (2π)−n/2

∫
Rn f(t)e

−itx dt
of this function vanishes on R

n \Rn
+ . The simple example of the function

fa(z) =

n∏

j=1

(i+ zj)
−s exp(−iajzj),

where z = (z1, . . . , zn) ∈ C
n
+ , a = (a1, . . . , an) ∈ R

n
+ , and s > 1, shows that this assertion does not

hold for N(Cn
+).

For n = 1, it was proved in [5] that if f̂(x) → 0 sufficiently rapidly as x → −∞, then the

function f̂ identically vanishes on R−. Moreover, a necessary and sufficient condition on the rate
of decrease for this assertion to hold was found.
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A substantial role in the proof of this result was played by a factorization of functions in
N(C+) (see [1, Sec. II.5, (5.10)]). It is well known that, for n � 2, there are no factorizations (see
[2, Theorem 4.4.1]). In this paper, we state a similar assertion for all n � 1; its proof does not use
factorization. We also give several interesting, in our view, applications to the theories of Hardy
classes and of quasi-analytic classes of functions.

2. In what follows, we use the following standard notation (see, e.g., [3] and [4]). For z =

(z1, . . . , zn)∈C
n , we set ‖z‖=

√
|z1|2 + · · ·+ |zn|2 , and for k = (k1, . . . , kn) ∈ Z

n
+ , we set |k| =

k1 + · · · + kn . Let M(r) = M(r1, . . . , rn), where r = (r1, . . . , rn) ∈ R
n
+ , be a positive func-

tion monotonically increasing with respect to each variable rj ∈ R+ , 1 � j � n, for fixed

r′ = (r1, . . . , rj−1, rj+1, rn) ∈ R
n−1
+ and satisfying the condition

lim
‖r‖→+∞

ln ‖r‖
lnM(r)

= 0.

We set

M (j)
m = sup

x∈R+

xm

M(r1, . . . , rj−1, x, rj+1, . . . , rn)
, m ∈ Z+, j = 1, . . . , n,

Tj(t) = sup
m�1

tm

M
(j)
m

, t ∈ R+ .

By RP(Rn) we denote the class of functions f ∈ L1(Rn) for which the Cauchy-type integral
identically vanishes on C

n \ {Cn
+ ∪ C

n−} if n � 2 and on L1(R) if n = 1.

Theorem 1. Suppose that f ∈ N(Cn
+), the boundary values of f on R

n belong to the class
RP(Rn), and

lim
‖y‖→+∞

ln |f(iy)|
‖y‖ � 0. (1)

Suppose also that the Fourier transform of the function f is bounded as

|f̂(−x)| � 1

M(x)
, x = (x1, . . . , xn) ∈ R

n
+. (2)

If, in addition,
∫ +∞

1

lnTj(r)

r3/2
dr = +∞, j = 1, . . . , n, (3)

then f̂(x) = 0 for all x ∈ R
n \ Rn

+ , and f belongs to the Hardy class H1(Cn
+). Conversely, if

M(x1, . . . , xn) = exp

( n∑

j=1

Pj(xj)

)

,
P

′
j (t)t

Pj(t)
↗ +∞ as t → +∞, j = 1, . . . , n, (4)

and at least one of the integrals in (3) converges, then there exists a function f ∈ N(Cn
+)∩RP(Rn)

such that f̂ satisfies (2) but f̂(x) �= 0 for x ∈ R
n− if f /∈ H1(Cn

+).

Remark 1. For the case where the majorant M has the form (4), the author proved Theorem 1
by a different method in his previous paper [6]. We also mention that Theorem 1 is essentially used
in the proofs of Theorems 2 and 3.

Remark 2. The example of the function f(z1, z2) =
ϕ(z1)

(i+z1)2(i+z2)2S(z2)
, z = (z1, z2) ∈ C

2
+ , where

ϕ ∈ H∞(C+) and S is any inner function in C+ , shows that the condition that the boundary values
of f belong to the class RP(Rn) is necessary for the validity of Theorem 1.

It follows from the form of the function fa that there exists a function g ∈ C∞(Rn)∩N(Cn
+)∩

L1(Rn) such that lim|x|→+∞ ∂kg(x)/∂xk = 0 for any k = (k1, . . . , kn) ∈ Z
n
+ and

∫
Rn |g(x+ iy)|dx �

c0 exp(a · y), a = (a1, . . . , an), y = (y1, . . . , yn) ∈ R
n
+ , c0 > 0. Nevertheless, the following theorem

is valid.
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Theorem 2. Suppose that M = {Ms}+∞
s=1 is a monotonically increasing sequence of positive

numbers,

C∞(M) =

{

g ∈ C∞(Rn) :

∣
∣
∣
∣
∂|k|g(x1, . . . , xn)
∂xk11 · · · ∂xknn

∣
∣
∣
∣ � A|k|M|k|, x ∈ R

n

}

,

T (r) = sup
s�1

rs

Ms
, r ∈ R+, (5)

and

f ∈ N(Cn
+) ∩ RP(Rn) ∩C

∞(M). (6)

If condition (1) holds and
∫ +∞

1

lnT (r)

r3/2
dr = +∞, (7)

then f ∈ H1(Cn
+) and

∫
Rn |f(x+ iy)|dx �

∫
Rn |f(x)| dx for all y ∈ R

n
+ .

Conversely, if the integral (7) converges or condition (1) is violated, then there exists a function
f satisfying (6) but not belonging to the class H1(Cn

+).

The following theorem refines Salinas’ classical theorem [7] for n = 1.

Theorem 3. Suppose that g ∈ C∞(M) and there exists a function f ∈ N(Cn
+) ∩ RP(Rn)

satisfying condition (1) and such that lim|y|→0 f(x+ iy) = g(x) almost everywhere on R
n . Suppose

also that T (r) is defined by (5), provided that condition (7) holds, and

∂|k|g(x0)
∂xk

= 0, k ∈ Z
n
+, (8)

for some x0 ∈ R
n . Then g(x) = 0 for all x ∈ R

n .
Conversely, if the integral (7) converges, then there exists a function g ∈ C∞

A (M) = C∞(Cn
+ ∪

R
n) ∩H(Cn

+) such that condition (8) holds but g does not identically vanish on R
n ; here H(Cn

+)
denotes the set of all analytic functions in C

n
+ .

As mentioned above, the proofs of Theorems 2 and 3 are based on Theorem 1, and the proof
of the latter reduces to solving the weak invertibility problem for bounded analytic functions in
Bergman-type weight spaces in C

n
+ . This problem is solved in these spaces by the method of

weighted approximation by algebraic polynomials (see [8]).
The author thanks the referee for constructive comments.
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