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Around the turn of the last century, the question of where an analytic function
defined on the unit disk D = {z ∈ C : |z| < 1} or the upper half-plane H = {z ∈ C :
Im z > 0} can map points z0 ∈ D or z0 ∈ H, respectively, was considered for different
classes. Recently, numerous publications revived the interest to such problems, see,
e.g., [2], [4-9].

The notable progress goes back to an idea by Loewner to express schlicht functions
as solutions to a differential equation. Through Loewner’s equation, it is possible to
interpret an optimization problem for classes of univalent functions as the problem
of finding a control that steers the trajectory of a dynamical system to the boundary
of its reachable set. The most part of recent results in the general question has been
obtained with the help of optimization technique. Powerful tools from the theory of
optimal control can be applied to tackle the value region problem expressed via the
Loewner equation.

Denote H(T ), T > 0, the set of conformal maps from H \K(T ), with arbitrary
hulls K(T ) of half-plane capacity T , onto H, normalized hydrodynamically as

fK(z) = z +
2T

z
+O

(
1

|z|2

)
, H ∋ z → ∞.

Roth and Schleissinger [9] found the set {f(z0)}, z0 ∈ H, for the class ∪T>0H(T ).
This research was continued in [7] for the class H(T ) with fixed T . Without loss of
generality, assume that z0 = i and consider the extremal problem to describe the
value region

D(T ) = {f(i) : f ∈ H(T ), i /∈ K(T )}.
To formulate the result for 0 ≤ T ≤ 1

4 , denote by C0(φ, T ) > 0, −π
2 < φ < π

2 ,

0 ≤ T ≤ 1
4 , the unique root of the equation

2 cos2 φ log(1− sinφ) + (1− sinφ)2 = 2 cos2 φ logC + C2(1− 4T ).

For a fixed T ∈ (0, 14 ], this equation has a unique solution C = C0(φ, T ) depending
on φ.

Theorem 1. The domain D(T ), 0 < T ≤ 1
4 , is bounded by two curves l1 and l2

connecting the points i and i
√
1− 4T . The curve l1 in the complex (u, v)-plane is

parameterized by the equations

u(T ) =
C2

0(φ, T )(4T − 1) + (1− sinφ)2

2C0(φ, T ) cosφ
, v(T ) =

1− sinφ

C0(φ, T )
, −π

2
< φ <

π

2
.

The curve l2 is symmetric to l1 with respect to the imaginary axis.
Denote by φ0(T ) ∈ (−π

2 ,
π
2 ), T > 1

4 , the unique solution of the equation

log
1− sinφ

1 + sinφ
+

1− sinφ

1 + sinφ
+ 1 = log

1

4T − 1
.
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For T > 1
4 and φ ∈ [φ0(T ),

π
2 ], denote by C0(φ, T ) > 0 the minimal root of this

equation and by C00(φ, T ) > 0 its maximal root.
Theorem 2. The domain D(T ), T > 1

4 , is bounded by two curves l1 = l11 ∪ l12
and l2 = l21∪ l22 having a mutual endpoint i ∈ l11∩ l21. The curve l11 in the complex
(u, v)-plane is parameterized by the equations

u(T ) =
C2

0(φ, T )(4T − 1) + (1− sinφ)2

2C0(φ, T ) cosφ
, v(T ) =

1− sinφ

C0(φ, T )
, φ0(T ) ≤ φ ≤ π

2
.

The curve l12 is parameterized by the equations

u(T ) =
C2

00(φ, T )(4T − 1) + (1− sinφ)2

2C00(φ, T ) cosφ
, v(T ) =

1− sinφ

C00(φ, T )
, φ0(T ) ≤ φ ≤ π

2
.

The curve l2 is symmetric to l1 with respect to the imaginary axis.
The same approach was used to draw similar value regions for inverse functions

f−1 : H → H \K(T ).
We observe many value region problems solved in [4-6]. For instance, the authors

determine value sets {f(z0)}, z0 ∈ D, and {f−1(w0)} for the class

I = {f ∈ H : f(−z) = −f(z), z ∈ H},
where H is the class of univalent self-mappings of H with the hydrodynamic nor-
malization. Going to self-maps of D, they prove a result which is equivalent to
the classical solution by Goryainov and Gutlyanski [1] in the class S(M), M > 1,
S(∞) = S, of univalent functions f in D, f(0) = 0, f ′(0) = 1, and |f(z)| < M in D.
The same is done for typically real functions in D and some other classes.

Remind a theorem by Fedorov [3] which gives a value region {f(z0)}, z0 ∈ D, over
the class SR of functions f ∈ S with real values f (n)(0), n ≥ 2. Obviously, an answer
is easy if z0 is real. From the other hand, it is strongly nontrivial when Im z0 ̸= 0.
Fedorov’s result is extended in [8] to the class SR(M) = SR ∩ S(M). Usually, a
subclass is organized more properly than a whole class of functions. However, it
is not the case when we pass from S to S(M) or from SR to SR(M). Fedorov
completely solved the problem by simultaneously considering two moduli problems
for pairs of homotopic classes of curves. In SR(M), the problem is formulated as a
reachable set problem for the Hamilton system of controllable differential equations
in the frames of the Loewner theory. A family of Cauchy problems is substituted
for the family of boundary value problems. The free parameter in the initial data
serves as a parameter for the boundary curve of the value region. We do not write
down a theorem proved in [8] since it requires too large volume.

Finally, let us concern with a class of holomorphic injective self-maps f : D → D
having boundary fixed points, the class actively investigated during last decades by
Goryainov, among others. For the dynamics of a self-map f : D → D, a crucial role
is played by the points σ ∈ ∂D for which f(σ) := ∠ limz→σ f(z) = σ and the angular
derivative f ′(σ) is finite. Such points σ are called boundary regular fixed points. In
particular, a classical result due to Wolff and Denjoy asserts that if f ∈ Hol(D,D)
has no fixed points in D, then it possesses the so-called Denjoy-Wolff point, i.e., a
unique boundary fixed point τ such that f ′(τ) ≤ 1.

Consider univalent self-maps f : D → D with a given boundary regular fixed point
σ ∈ ∂D and the Denjoy-Wolff point τ ∈ ∂D \ {σ}. Using automorphisms of D, we
may suppose that τ = 1 and σ = −1. We mean to determine a sharp value region
of f 7→ f(z0), z0 ∈ D, for all such self-maps of D with f ′(−1) fixed. Fix z0 ∈ D,
T > 0 and let ζ0 = x01 + ix02 := l(z0), where

l : D → S; z 7→ log
1 + z

1− z
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is a conformal map of D onto the strip S :=
{
ζ : − π/2 < Im ζ < π/2

}
. Define

a±(T ) := e−T/2 sinx02 ± (1− e−T/2), R(a, T ) := log
1− a

1− a+(T )
log

1 + a

1 + a−(T )
,

V (ζ0, T ) :=
{
x1+ix2 ∈ S : a−(T ) ≤ sinx2 ≤ a+(T ),

∣∣x1−x01− T
2

∣∣ ≤ √
R(sinx2, T )

}
.

Theorem 3. Let f ∈ Hol(D,D) \ {idD} and T > 0. Suppose that:
(i) f is univalent in D;
(ii) the Denjoy-Wolff point of f is τ = 1;
(iii) σ = −1 is a boundary regular fixed point of f and f ′(−1) = eT .
Then

f(z0) ∈ V(z0, T ) := l−1
(
V (l(z0), T )

)
\ {z0}

for any z0 ∈ D. This result is sharp, i.e., for any w0 ∈ V(z0, T ) there exists f ∈
Hol(D,D) \ {idD}, satisfying (i) – (iii) and such that f(z0) = w0.

Characterize functions f corresponding to boundary points of V(z0, T ). The role
of the Koebe function f0(z) = z(1−z)−2in S is played by the Pick function pM(z) :=
f−1
0 (f0(z)/M), M > 1.
Theorem 4. For any w0 ∈ ∂V (z0, T ) \ {z0}, there exists a unique f = fw0

satisfying conditions (i)-(iii) in Theorem 3 and such that fw0
(z0) = w0. If w0 =

l−1(ζ0+T ), then fw0
is a hyperbolic automorphism of D, namely, fw0

(z) = l−1(l(z)+
T ). Otherwise, fw0

is a conformal mapping of D onto D minus a slit along an analytic
Jordan curve γ orthogonal to ∂D, with f ′

w0
(1) = 1. Moreover, fw0

= h1 ◦ pM ◦ h2 for
some h1, h2 ∈ Aut(D) and M > 1 if and only if w0 = l−1(x01 + T/2 + i arcsin a±(T )).

Note that z0 is a boundary point of the value region V(z0, T ), but does not belong
to V(z0, T ). This point z0 would be included, and this would be the only modification
of the value region, if we replace the equality f ′(−1) = eT in condition (iii) of
Theorem 3 by the inequality f ′(−1) ≤ eT and remove the requirement f ̸= idD
assuming as a convention that idD satisfies (ii). Note also that, under the conditions
of Theorem 3 modified in this way, f(z0) = z0 if and only if f = idD.
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