ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.2.392.06, СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО», ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЁНОЙ СТЕПЕНИ ДОКТОРА НАУК

аттестационное дело №		
решение диссертационного совета от	23.10.2025	№ 118/25

О присуждении **Зюбину Андрею Юрьевичу**, гражданину РФ, учёной степени доктора физико-математических наук.

Диссертация «Спектрофлуорометрия и спектроскопия гигантского комбинационного рассеяния света в исследованиях биомаркеров социально-значимых заболеваний» по специальности 1.5.2. - Биофизика принята к защите 26 мая 2025 года, протокол № 116/25, диссертационным советом 24.2.392.06, созданным на базе ФГБОУ ВО «СГУ имени Н.Г. Чернышевского», г. Саратов, ул. Астраханская, 83. Совет 24.2.392.06 создан приказом Минобрнауки России № 362/нк от 19.03.2020 г.

Соискатель Зюбин Андрей Юрьевич, гражданин РФ, 12.05.1985 года рождения, в 2008 году окончил ФГОУ ВПО «Российский государственный университет имени Иммануила Канта» по специальности «Радиофизика и электроника». После окончания с отличием магистратуры в 2017 году по направлению 03.04.02 «Физика», был принят на должность младшего научного сотрудника в НОЦ «Фундаментальная и прикладная фотоника. Нанофотоника» БФУ им. И. Канта.

В 2018 году защитил кандидатскую диссертацию на соискание ученой степени кандидата физико-математических наук по специальности 01.04.05 - Оптика (диссертационный совет Д 212.232.45) на физическом факультете Санкт-Петербургского государственного университета по теме «Спектрально-кинетические исследования фотофизических процессов с участием молекул красителей и биомолекул в присутствии наночастиц серебра», диплом кандидата наук серия КНД № 082468, выдан в соответствии с решением совета по защите диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, созданного на базе Санкт-Петербургского государственного университета от 28 июня 2018 года № 18.

С 2019 года работал сначала в должности научного, а затем старшего научного сотрудника научно-образовательного центра «Фундаментальная и прикладная фотоника. Нанофотоника» БФУ им. И. Канта. С 2021 года работает в должности доцента образовательно-научного кластера «Институт высоких технологий» в качестве внутреннего совместителя. С

2022 года работает в должности заведующего лабораторией математического моделирования оптических свойств наноматериалов в качестве внутреннего совместителя.

Диссертация «Спектрофлуорометрия и спектроскопия гигантского комбинационного рассеяния света в исследованиях биомаркеров социально-значимых заболеваний» на соискание ученой степени доктора физико-математических наук была выполнена на базе образовательно-научного кластера «Институт высоких технологий» Федерального государственного автономного образовательного учреждения высшего образования «Балтийский федеральный университет имени Иммануила Канта» (далее – БФУ им. И. Канта), г. Калининград.

Научный консультант: Лаврова Анастасия Игоревна, доктор физико-математических наук, ведущий научный сотрудник федерального государственного бюджетного учреждения «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Министерства здравоохранения Российской Федерации.

Официальные оппоненты,

Горин Дмитрий Александрович, доктор химических наук, профессор, профессор центра фотоники и фотонных технологий, автономная некоммерческая образовательная организация высшего образования «Сколковский институт науки и технологий» (Сколтех), г. Москва.

Кистенев Юрий Владимирович, доктор физико-математических наук, профессор, заведующий лабораторией лазерного молекулярного имиджинга и машинного обучения, федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет», г. Томск.

Салмин Владимир Валерьевич, доктор физико-математических наук, доцент, профессор кафедры общей физики, федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)», г. Москва,

дали положительные отзывы на диссертацию.

Ведущая организация федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева», в своём положительном заключении, подписанном профессором кафедры лазерных и биотехнических систем ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева», доктором физико-математических наук Братченко Иваном Алексеевичем, а также заведующим кафедрой лазерных и биотехнических систем, доктором физико-математических наук, профессором Захаровым Валерием Павловичем и утвержденном ректором ФГАОУ ВО

«Самарский национальный исследовательский университет имени академика С.П. Королева» доктором экономических наук, профессором Богатыревым Владимиром Дмитриевичем, отметила актуальность проведенного исследования, новизну полученных результатов, а также теоретическую и практическую значимость работы, высокий научный уровень диссертации, и указала, что диссертация Зюбина Андрея Юрьевича «Спектрофлуорометрия и спектроскопия гигантского комбинационного рассеяния света в исследованиях биомаркеров социально-значимых заболеваний» удовлетворяет требованиям ВАК РФ, предъявляемым к докторским диссертациям, а ее автор Зюбин Андрей Юрьевич заслуживает присуждения степени доктора физико-математических наук по специальности 1.5.2. – Биофизика.

Выбор официальных оппонентов и ведущей организации обосновывается высоким уровнем экспертизы и близким соответствием проводимых ими исследований теме диссертации, высокой квалификацией в области применения спектроскопии гигантского комбинационного рассеяния света и спектрофлуорометрии, подходов машинного обучения для анализа живых объектов, биологических жидкостей человека, а также классификации массивов таких данных с целью выявления соответствующих биомаркеров различий в спектрах.

Соискатель имеет 56 опубликованных научных работ по теме диссертации, из них 22 статьи в изданиях, входящих в международные базы данных Web of Science/Scopus, 19 работ опубликованы в сборниках трудов международных и всероссийских научных конференций и симпозиумов. Зарегистрировано 4 патента РФ на изобретение, 11 свидетельств о государственной регистрации программ ЭВМ и баз данных. Наиболее значимые публикации автора по теме диссертации:

- 1. **Zyubin A.**, Rafalskiy, V., Lopatin, M., Demishkevich, E., Moiseeva, E., Matveeva, K., Kon I., Khankaev A., Kundalevich A., Butova V., Lipnevich L., Lyatun I., Samusev I. & Bryukhanov, V. Spectral homogeneity of human platelets investigated by SERS // PLOS ONE. 2022. Т. 17. №. 5. С. e0265247. DOI: 10.1371/journal.pone.0265247. В статье приведено подробное
- исследование спектральной однородности тромбоцитов человека с использованием спектроскопии гигантского комбинационного рассеяния света.
- 2. Kundalevich, A., Kapitunova, A., Berezin, K., **Zyubin, A.**, Moiseeva, E., Rafalskiy, V., & Samusev, I. Raman spectra simulation of antiplatelet drug-platelet interaction using DFT //Scientific Reports. − 2024. − Т. 14. − №. 1. − С. 1445. DOI: 10.1038/s41598-024-51605-7. В статье отражены результаты молекулярного докинга и математического DFT моделирования взаимодействия рецептора/фермента тромбоцита-мишени и лекарственных препаратов/метаболитов в ограниченной области.

- 3. **Zyubin A.**, Kon, I., Tcibulnikova A., Matveeva K., Khankaev A. Numerical FDTD-based simulations and Raman experiments of femtosecond LIPSS //Optics Express. 2021. Т. 29. №. 3. С. 4547- 4558. DOI: 10.1364/OE.413460. В статье получены результаты конечно-разностного математического моделирования во временной области для распределения напряженности электрического поля вблизи периодических поверхностных структур, созданных импульсным фемтосекундным лазером.
- 4. **Zyubin A.**, Rafalskiy V., Tcibulnikova A., Moiseeva E., Matveeva K., Tsapkova A., Lyatun I., Medvedskaya P., Samusev I., Demin M. Surface-enhanced Raman spectroscopy for antiplatelet therapy effectiveness assessment //Laser Physics Letters. − 2020. − Т. 17. − №. 4. − С. 045601. DOI: 10.1088/1612-202X/ab7be5. В статье приводятся результаты спектрального анализа данных тромбоцитов у здоровых добровольцев, получавших антитромбоцитарную терапию, и лиц с патологиями сердечно-сосудистых заболеваний, получавших антитромбоцитарную терапию.
- 5. Byuchkova Y. A., **Zyubin A.Y.**, Rafalskiy V.V., Moiseeva E.M., Samusev I.G. Mathematical Analysis of Raman Spectra Data Arrays Using Machine Learning Algorithms //Journal of Biomedical Photonics & Engineering. − 2023. − Т. 9. − №. 2. − С. 020308. DOI: 10.18287/JBPE23.09.020308. Данная статья посвящена применению математических методов классификации и дифференциации массивов спектральных данных комбинационного рассеяния света низкого разрешения для сложных биологических соединений, таких как тромбоциты человека.
- 6. **Zyubin A.**, Lavrova A., Manicheva O., Dogonadze M., Belik V., Samusev I. Raman spectroscopy for glutathione measurements in Mycobacterium tuberculosis strains with different antibiotic resistance //Journal of Raman Spectroscopy. − 2021. − Т. 52. − №. 9. − С. 1661-1666. DOI: 10.1002/jrs.6088. В работе проведено исследование дезактивированных штаммов МбТ семейства *Веізіпд* методом спектроскопии КРС и уделено особое внимание глутатиону (GSH) как потенциальному биомаркеру для идентификации штаммов.
- 7. **Zyubin A.**, Lavrova, A., Manicheva, O., Dogonadze, M., Belik, V., Demin, M., Samusev, I. The cell-wall structure variation in Mycobacterium tuberculosis with different drug sensitivity using Raman spectroscopy in the high-wavenumber region //Laser Physics Letters. − 2020. − Т. 17. − №. 6. − С. 065602. DOI: 10.1088/1612-202X/ab8796. В статье получены результаты исследований дезактивированных штаммов микобактерий семейства *Beijing* с различной лекарственной чувствительностью (широкой, множественной и чувствительных штаммов.
- 8. **Zyubin, A.**, Lavrova, A., Manicheva, O., Dogonadze, M., & Samusev, I. Dataset of single Mycobacterium tuberculosis bacteria cells with different antibiotic susceptibility obtained by Raman spectroscopy //Data in brief. 2018. Т. 21. С. 2430-2434. DOI: 10.1016/j.dib.2018.11.095. Статья содержит экспериментальные данные комбинационного рассеяния света которые могут быть использованы для быстрой идентификации бактерий *Mycobacterium tuberculosis* пекинского штамма группы *in vitro*.

- 9. **Zyubin A,** Lavrova A, Dogonadze M, Borisov E, Postnikov EB. 2025. Single-cell analysis of Mycobacterium tuberculosis with diverse drug resistance using surface-enhanced Raman spectroscopy (SERS) PeerJ 13:e18830. DOI: 10.7717/peerj.18830. В статье приведены результаты анализа единичных клеток микобактерий туберкулеза с различной лекарственной устойчивостью с использованием спектроскопии ГКРС.
- 10. Kundalevich, A., Kapitunova, A., **Zyubin, A.**, & Samusev, I. Raman spectra DFT simulation of M. Tuberculosis cell wall components //Journal of Molecular Structure. 2025. Т. 1326. С. 141051. DOI: The article reflects the results of theoretical simulation using the DFT method for the components of the cell wall of *Mycobacterium tuberculosis*. В статье получены теоретические спектры комбинационного рассеяния миколовой кислоты (альфа, кето, метокси), входящей в состав клеточной стенки микобактерии и являющихся мишенью лекарственных препаратов, а также арабиногалактана.

На автореферат диссертации поступило 6 положительных отзывов. В них отмечены актуальность, высокий уровень работы, научная новизна и практическая значимость полученных результатов. Отзывы поступили от:

- 1) Новицкого Дениса Викторовича, доктора физико-математических наук, доцента, заведующего центром «Нанофотоника» института физики НАН Беларуси; без замечаний.
- Мизевой Ирины Андреевны, доктора физико-математических наук, старшего научного сотрудника отдела физической гидродинамики ИМСС УрО РАН.
 Замечания:
 - Наличие стилистических и грамматических ошибок. Неприятно, что ошибки просочились в ключевые пункты автореферата. Описание экспериментального оборудования, использованного при получении результатов диссертации выполнено не по ГОСТу, что затрудняет восприятие материала.
- 3) Скорб Екатерины Владимировны, доктора химических наук, директора мегафакультета наук о жизни, профессора научно-образовательного центра инфохимии федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский университет ИТМО».

Замечания:

- В автореферате не всегда четко показано, как предложенные методы превосходят существующие диагностические подходы. Было бы полезно добавить сравнительный анализ с зарубежными или отечественными аналогами.
- Хотя работа демонстрирует высокую точность классификации (до 83,4%), не полностью раскрыты ограничения методов, связанные с вариабельностью биологических образцов.

- Практические рекомендации по внедрению методов в клиническую практику представлены в общем виде. Конкретизация этапов апробации и сотрудничества с медицинскими учреждениями усилила бы прикладную значимость работы.
- 4) Трубниковой Екатерины Владимировны, доктора биологических наук, профессора кафедры биологии и экологии ФГБОУ ВО «Курский государственный университет».

Замечания:

- Хотелось бы уточнить, имеются ли данные о генетических особенностях, приводящих к резистентности штаммов, исследованных в работе?
- 5) Семёнова Константина Николаевича, доктора химических наук, профессора, заведующего кафедрой общей и биоорганической химии, заведующего лабораторией биомедицинского материаловедения ПСПбГМУ им. И.П. Павлова Минздрава России.

Замечания:

- Наличие стилистических и грамматических ошибок.
- 6) Касьяненко Нины Анатольевны, доктора физико-математических наук, профессора, профессора кафедры молекулярной биофизики и физики полимеров физического факультета СПбГУ.

Замечания:

- Каким образом осуществлялся отбор образцов для исследования среди здоровых добровольцев и пациентов с патологией ССЗ при сравнении колебательных полос тромбоцитов, включающих 4 аминокислоты, дисульфидные мостики, «белки, липиды и другие компоненты». Какие белки участвовали в анализе? Сколько образцов было отобрано для анализа? Это были единичные исследования или было проведено усреднение по нескольким выборкам для одних и тех же участников?
- Каким образом при использовании коллоидных оптических сенсоров осуществлялась фиксация изучаемых объектов вблизи наночастиц?

На все высказанные замечания соискателем даны исчерпывающие ответы.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

1. Доказана перспективность использования планарных оптических сенсоров для исследования изменений молекулярной структуры тромбоцитов, бактерий *E.coli*, микобактерий *M.tuberculosis*, а также выработана оптимальная методология проведения соответствующих экспериментальных процедур.

- 2. Установлены спектральные различия биообъектов между состоянием нормы, отклонением от нее под воздействием лекарственных препаратов для микобактерий туберкулеза (в том числе единичных), обладающих различным статусом антибиотикорезистентности, кишечной палочки *E. coli*, а также для тромбоцитов человека при наступлении патологии ССЗ.
- 3. Разработаны методы и подходы к анализу биомолекулярно-релевантных особенностей, отражающихся в специфике спектральных характеристик рассеяния на клетках методом гигантского комбинационного рассеяния света при использовании возбуждающего излучения с длинами волн λ=532 нм, λ=632.8 нм, λ=785 нм.
- 4. Разработаны методы выделения наиболее информативных спектральных полос, служащих биомаркерами для определения степени антибиотикорезистентности бактерий и определения состояния тромбоцитов на основе анализа существенных выборок спектральных данных и их групп; релевантность идентификации таких биомаркеров обоснована с применением многомерных методов статистического анализа (машинное обучение, корреляционный анализ и другие).
- 5. На основе анализа изменения значений совокупности выделенных биомаркеров при различных условиях аргументированы механизмы биофизических процессов, приводящих к изменениям в рецепторах P2Y12 тромбоцитов под воздействием лекарственных средств, а также антибиотикорезистентности кишечной палочки *E. coli* и микобактерий туберкулеза.
- 6. Сформулированы положения о молекулярно-биологических механизмах, влияющих на изменения спектральных биомаркеров рецепторов тромбоцита P2Y12 и компонентов клеточных стенок микобактерий туберкулёза. Получено подтверждение этих положений на основе результатов моделирования бимолекулярных спектров с использованием метода теории функционала плотности (DFT).
- 7. Обоснованы перспективы *in silico*-скрининга новых веществ-кандидатов в лекарственные препараты, направленных на структуры клеточной стенки, что может способствовать созданию более эффективных средств терапии туберкулёза и расширению методов поиска новых антибиотиков.

Теоретическая значимость работы заключается в получении новых фундаментальных знаний о биомаркерах, характеризующие молекулярные изменения, связанные с тромбоцитарной агрегацией, состоянием тромбоцита, а также антибиотиотикорезистентностью микобактерий туберкулеза, в частности: 1) спектрально определены спектральные внутриштаммовые различия клеточной стенки *MbT* для *Beijing spp*. с различной степенью лекарственной устойчивости и местом локализации, в том числе на

единичных клетках. 2) Сопоставлено состояние тромбоцитов периферической крови было сопоставлено с детальными характеристиками спектров КРС и ГКРС на основе новых методов, оптимизирующих их регистрацию базирующееся на спектральном анализе молекулярных изменений компонентов структуры клеточной стенки микобактерии в результате действия лекарственных препаратов. 3) Определены потенциальные маркеры антибиотикорезистентности получили новое объяснение на основе детально изученных спектров КРС и ГКРС рассеяния клеток микобактерий туберкулеза (в том числе одиночных) с различной степенью антибиотикорезистентности. 4) Уточнены молекулярно-биологические характеристики выявленных биомаркеров, связанных с антибиотикорезистентностью и механизмами связывания лекарственных препаратов с мишенями. Данные характеристики были определены на основе интеграции экспериментальных результатов и математического моделирования колебательных спектров комбинационного рассеяния света биомолекул, входящих в состав клеточной стенки микобактерий и рецептора тромбоцита.

Полученные результаты имеют **практическую значимость**, которая заключается в получении новых результатов, по данным КР и ГКР спектроскопии о биомаркерах антибиотикорезистентности, а также состояния рецепторов тромбоцитов. Совокупность полученных результатов обладает ценностью при разработке портативных средств на основе КРС для диагностики антибиотикорезистентности и приборов, направленных на оценку тромбоцитарной агрегации *in vitro*.

Достоверность описанных в диссертационном исследовании результатов, сделанных выводов, обсуждений и заключения обусловлена:

- 1. Использованием современного высококлассного научно-исследовательского оборудования, и программного обеспечения и применением апробированных методик расчёта.
- 2. Большим объёмом использованных в работе спектральных данных.
- 3. Применением хорошо апробированных методов математической статистики и машинного обучения для обработки результатов.
- 4. Воспроизводимостью экспериментальных данных, проверкой их другими методами, сравнением их с результатами, полученными другими авторами.
- 5. Опубликованием результатов диссертации в рецензируемых российских и международных научных журналах, а также многократной апробацией результатов на всероссийских и международных конференциях.

Личный вклад соискателя: Автором диссертационной работы лично было получено большинство экспериментальных результатов, в том числе в рамках сотрудничества при реализации грантов и научных проектов. Автор принимал непосредственное участие при

выдвижении научных гипотез и их проверке, а также получал, обрабатывал, анализировал готовил публикации в полученные данные, рецензируемых научных Экспериментальные исследования проводились на базе научно-образовательного центра «Фундаментальная и прикладная фотоника», ресурсного центра «Оптические и лазерные методы исследования вещества» Санкт-Петербургского государственного университета. В теоретических исследованиях автор анализировал и интерпретировал данные расчетов соавторов статей с точки зрения биофизики. Теоретические исследования проводились на базе лаборатории математического моделирования оптических свойств наноструктур НОМЦ «Северо-Западный математический центр имени Софьи Ковалевской». Подготовка биологических образцов микобактерий туберкулеза осуществлялась соавторамимикробиологами на базе СПб НИИ Фтизиопульмонологии Минздрава РФ, а богатой тромбоцитами – на базе Центра клинических исследований БФУ им. И. Канта.

В ходе защиты диссертации были высказаны следующие критические замечания и вопросы:

- 1. Чем обусловлено то, что в заголовок работы вынесено именно гигантское комбинационное рассеяние света?
- 2. Объекты вашего исследования ранее исследовались другими методами и если да, то какова корреляция между вашими результатами и результатами предшественников?
- 3. Что вы понимаете под коэффициентом усиления ГКРС? Как он вычислялся и как измерялся?
- 4. Когда вы говорите о измерении фактора усиления и анализе ваших подложек, какие вариации от точки к точке, от измерения к измерению по подложке были? В какой точке, в какой области, как интегрировали?
- 5. Какой размер микробактерии туберкулеза? Какая площадь фокусировки пятна, что на одной бактерии?
- 6. Поясните, какая плотность мощности излучения, получаемая на фокусировки лазерного пятна на бактерии?
- 7. Были ли у вас как-то стандартизованы с этой точки зрения условия пробоподготовки? И если да, то по каким критериям?
- 8. Какая модель переноса использовалась, куда шел перенос и что являлось диполями?
- 9. Поясните, платиновые частицы являются ли диполем? Применима ли теория Фёрстера для описания таких переносов?
- 10. Как вы разделяете вклад переноса тирозина и триптофана? У вас изменение формы спектра происходило? Где происходит тушение?
- 11. В чём заключалась вообще задача исследовать, классифицировать по группам тромбоциты?

- 12. Какое расстояние распространения плазмонного поля было вокруг наночастиц, и как это расстояние соотносится с ГКРС клеток?
- 13. Вы можете КРС только от мембраны измерить?
- 14. Концентрация белка, концентрация липидов, наверное, относится как одна миллионная?
- 15. Вы рассматриваете платиновую наноструктуру как акцептор? Почему у вас на рисунке разнонаправленные изменения времени жизни?
- 16. Период титановой сетки 80 микрон? Это как-то связано с размером тромбоцитов?

Соискатель Зюбин Андрей Юрьевич ответил на заданные ему вопросы, и привел собственную аргументацию:

- 1. Спектроскопия гигантского комбинационного рассеяния позволила нам получить разрешенные спектры бактериальных клеток и тромбоцитов, которые не могли получить с применением спектроскопии КРС. Спектроскопия ГКРС применялась для того, чтобы получить отчетливые спектры исследуемых объектов, которые нельзя было получить с помощью КРС. Поэтому спектроскопия ГКРС и было вынесена в название.
- 2. Мы ориентировались и сравнивали результаты с литературными данными. По ним мы верифицировали наши полученные результаты. Такие работы ведутся, сравнивать есть с чем.
- 3. Если это была единая структура звездообразная, например, мы брали область вблизи поверхности структуры и снимали интегральную интенсивность по площади. Коэффициент усиления измерялся с применением аналитической формулы для ГКРС, включающей интенсивность сигнала и концентрации.
- 4. Изменение интенсивности было порядка 20% от общей интенсивности спектра. При использовании титановых поверхностей создавались поверхности с повторяемым сигналом и коэффициентом усиления порядка 10^2 - 10^3 . Интегрирование происходило по всей поверхности структуры.
- 5. Размер бактерий составлял 4 или 5 микрон. Площадь лазерного пятна составляла один микрон или чуть больше.
- 6. Оценка мощности лазерного излучения на образце составляла порядка один милливатт.
- 7. Спектры комбинационного рассеяния света были сняты в одной стадии роста, когда клетки выходили в стационарную фазу роста.
- 8. В системе происходит тушение с переносом энергии с флуоресцентной богатой тромбоцитами плазмы на платиновую наночастицу. Применяемая модель модель переноса по Фёрстеру.

- 9. Нет. Платиновая частица здесь является акцептором и перенос идет в комплексе. То есть, у нас образуется комплекс платиновая частица-тромбоцит. Перенос по Ферстеру был продемонстрирован.
- 10. Не разделяли. В дальнейшем возможно снять отдельно триптофан, тирозин, фенилаланин в тех условиях или потушить их в спектре флуоресценции и посчитать эти переносы. В работе показана возможность переноса в комплексе богатой тромбоцитами плазмы и с ее ароматики на наночастицу и тушения спектра флуоресценции тромбоцитов. Изменение формы спектра не оценивали.
- 11. Задача заключалась в том, чтобы на молекулярном уровне оценить воздействие антитромбоцитарных препаратов с применением методов спектроскопии КРС и спектроскопии ГКРС.
- 12. Величина распространения поля плазмонных колебаний в пространство порядка 80 нанометров. Была оценена толщина оксидной пленки на поверхности титановой поверхности которая составляла 10 нанометров, которая не мешает осуществлять спектроскопию ГКРС тромбоцитарной массы.
- 13. Спектры ГКРС были получены от всей тромбоцитарной мембраны.
- 14. Концентрация белков и липидов была низкая, однако с применением спектроскопии ГКРС нужные компоненты были зарегистрированы.
- 15. Как акцептор. Возможно, потому что распределение частиц, которые мы исследуем слишком широкое. В дальнейшем стоит сделать частицы одинакового размера.
- 16. Наноразмерная периодичность это ширина лазерной линии, которая воздействовала на образец. То есть, это не связано с объемом и размером тромбоцитов. Ширина такой линии составляла порядка 100 нанометров.
- В результате рассмотрения диссертации Зюбина Андрея Юрьевича «Спектрофлуорометрия и спектроскопия гигантского комбинационного рассеяния света в исследованиях биомаркеров социально-значимых заболеваний» на заседании 23 октября 2025 года диссертационный совет принял решение:
- за достижения в области разработки новых теоретических и экспериментальных методов получения спектральных маркеров антибиотикорезистентности, маркеров ответа на проводимую антитромбоцитарную терапию у человека, основанных на анализе соответствующих биофизических процессов на молекулярном уровне и практическом применении разработанных методов в области медицинской биофизики для культур штаммов *М. tuberculosis* и тромбоцитов человека, присудить Зюбину Андрею Юрьевичу учёную степень доктора физико-математических наук по специальности 1.5.2. Биофизика.

При проведении тайного электронного голосования диссертационный совет в количестве 19 человек, из них 3 человек, участвующих в интерактивном режиме, 10 докторов наук по специальности 1.5.2. – Биофизика, участвовавших в заседании, из 21 человека, входящих в состав совета, проголосовали за –19, против – 0, воздержались – 0.

Заключение составил Член диссертационного совета д.ф.-м.н., проф.

My

Березин Кирилл Валентинович

Председатель диссертационного совета.

д.ф.-м.н., проф., чл.-корр. РАН

Тучин Валерий Викторович

Учёный секретарь диссертационного совета

д.ф.-м.н., профессор

Генина Элина Алексеевна

23.10.2025