МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Механико-математический факультет

УТВЕРЖДАЮ.

Декан механико-математического

факультета

Захаров А.М.

20 2 Ar.

Рабочая программа дисциплины

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Направление подготовки бакалавриата 09.03.03 – Прикладная информатика

Профиль подготовки бакалавриата Прикладная информатика в экономике

Квалификация (степень) выпускника Бакалавр

> Форма обучения очная

> > Саратов, 2021

Статус	ФИО	Полрись	Дата
Преподаватель- разработчик	Амелин Р.В.	1	28.09.21
Председатель НМК	Тышкевич С.В.	011	28.0921
Заведующий кафелрой	Коссович Л.Ю.	Mkg	28.09.21
Специалист Учебного управления			

1. Цели освоения дисциплины

освоения «Математические дисциплины информационной безопасности» заключаются в получении представления о современной методологии обеспечения информационной безопасности и о роли математических методов и программно-технических средств в обеспечении информационной безопасности, в подготовке к применению обеспечения информационной безопасности разработки и эксплуатации проектирования, организованных сложно программных систем.

2. Место дисциплины в структуре ООП

Дисциплина «Математические основы информационной безопасности» включена в обязательную часть Блока 1 «Дисциплины (модули)» ООП бакалавриата по направлению 09.03.03 «Прикладная информатика». На ее изучение отводится 288 часов (90 часов аудиторной работы, 158 часов СР, 36 часов - контроль). Согласно учебному плану направления и профиля подготовки данный курс в седьмом семестре заканчивается зачетов, в восьмом семестре - экзаменом.

Для этого направления подготовки она является краеугольным камнем общенаучной и специальной подготовки и находится в логической и содержательно-методической взаимосвязи с дисциплинами обязательной части: «Информационные системы и технологии», «Информатика и программирование», «Вычислительные системы, сети и телекоммуникации».

Дисциплина «Математические основы информационной безопасности» изучается на четвертом году обучения и является одной из важнейших терминальных дисциплин, завершающих базовую подготовку бакалавра прикладной информатики.

3. Результаты обучения по дисциплине

Код и наименование компетенции	Код и наименование индикаторов) достижения компетенции	Результаты обучения
ОПК 3 Сполобом жамаж		Знать:
ОПК-3. Способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.	1.1_Б.ОПК-3. Применяет принципы, методы и средства решения стандартных задач профессиональной деятельности на основе информационной и библиографической культуры с использованием информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.	- основные программно- технические методы и средства обеспечения информационной безопасности подконтрольных объектов, их роль и место в программной архитектуре компьютерных систем; Уметь: - использовать специализированное программное обеспечение для решения задач информационной безопасности. Владеть: - навыками применения положений современных нормативных документов и стандартов в области
	2.1_Б.ОПК-3. Решает стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.	информационной безопасности. Знать: - типовые подходы к программной реализации базовых сервисов безопасности в компьютерных системах; - типовые ошибки программирования, приводящие к уязвимостям компьютерных систем;
	3.1_Б.ОПК-3. Имеет опыт подготовки обзоров, аннотаций, составления рефератов, научных докладов,	Уметь: - выявлять угрозы информационной безопасности, обосновывать организационнотехнические мероприятия по защите информации в ИС; Владеть: - навыками проведения аудита программного обеспечения на предмет наличия типовых ошибок программирования. Знать: - математические основы, необходимые для решения задач обеспечения информационной безопасности.

	публикаций, и библиографии по научно- исследовательской работе с учетом требований информационной безопасности.	Уметь: - готовить обзоры, аннотации по тематике информационной безопасности. Владеть: - понятийным аппаратом информационной безопасности.
ОПК-4. Способен участвовать в разработке стандартов, норм и правил, а также технической документации, связанной с профессиональной деятельностью.	1.1_Б.ОПК-4. Свободно оперирует основными стандартами оформления технической документации на различных стадиях жизненного цикла информационной системы.	Знать: - математические основы, необходимые для решения задач обеспечения информационной безопасности; Уметь: - применять математические методы в обеспечении информационной безопасности Владеть: - понятийным аппаратом информационной безопасности;
	2.1_Б.ОПК-4. Использует стандарты оформления технической документации на различных стадиях жизненного цикла информационной системы.	Знать: - основные криптографические методы, алгоритмы и протоколы; - основные положения методологии комплексного подхода к обеспечению информационной безопасности;
		Уметь: - проводить анализ защищенности информационной системы, разрабатывать модели угроз для информационной системы, проектировать и внедрять систему защиты информации в соответствии с разработанной моделью угроз; Владеть: - навыками применения современного математического инструментария для решения задач в сфере информационной безопасности.
	3.1_Б.ОПК-4. Имеет навык	Знать:

составления технической	- виды угроз ИС и методы
документации на различных	обеспечения
этапах жизненного цикла	информационной
информационной системы.	безопасности;
	- типовые математические
	модели информационно
	безопасных систем.
	Уметь:
	- проводить анализ
	защищенности
	информационной системы.
	Владеть:
	- методикой построения,
	анализа и применения
	математических моделей для
	оценки степени
	защищенности
	информационной системы,
	качества использованных
	алгоритмов и технологий.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 8 зачетных единиц (288 часов).

№ п/п	Раздел дисциплины	C e m e c	Недел я семест ра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)						Формы текущего контроля успеваемости (по неделям семестра)
		T p		Лекции	Лаб.	Прак. занятия	КСР	CPC	Контроль	Формы промежуточн ой аттестации (по семестрам)
1.	Основный понятия информационной безопасности	7	1-2	2	4			10		Устный опрос
2.	Элементы теории информации и кодирования.	7	3-6	4	4			10		Устный опрос
3.	Математические основы криптографии	7	7-10	4	12			12		Устный опрос
4.	Криптографические методы защиты информации.	7	11-16	6	12			10		Устный опрос
5.	Идентификация и аутентификация.	7	17-18	2	4		2	10		Устный опрос
	Промежуточная аттестация									Зачет
	Общая трудоемкость дисциплины за 7 семестр – 108 часов			18	36		2	52		
6.	Протоколирование и аудит.	8	1-2	2	2	2		5		Устный опрос
7.	Компьютерные вирусы.	8	3-4	2	2	2		5		Устный опрос
8.	Средства защиты сети.	8	5-6	2	2	2		5		Устный опрос

9.	Средства и методы противодействия угрозам доступности информации.		7-8	2	2	2		5		Устный опрос
10.	0. Основные принципы построения систем защиты.		9-10	2	2	1		4		Устный опрос
11.	11. Информационная безопасность с точки зрения технологии программирования.		11	2	2	2		4		Устный опрос
12.	2. Техника и методология атаки.		12	1	1	1	2	3		Устный опрос
	Промежуточная аттестация								36	Экзамен
	Общая трудоемкость дисциплины за 8 семестр – 108 часов			13	13	13	2	31	36	
	Итого:			31	49	13	4	83	36	

Содержание дисциплины

Раздел 1. Основные понятия информационной безопасности

- 1.1. Предмет информационной безопасности. Свойства компьютерной информации, важные с точки зрения информационной безопасности: конфиденциальность, целостность и доступность.
 - 1.2. Угрозы информационной безопасности.
 - 1.3. Каналы утечки информации.
 - 1.4. Неформальная модель нарушителя.
- 1.5. Обзор стандартов и нормативно-правовой базы в сфере информационной безопасности.

Раздел 2. Элементы теории информации и кодирования

- 2.1. Сигналы, данные и методы получения информации. Свойства информации.
- 2.2. Количество информации как мера уменьшения неопределенности знаний. Алфавитный подход к вычислению количества информации.
- 2.3. Определение вероятности и основные правила вычисления количества информации.
 - 2.4. Информационная модель Шеннона.
 - 2.5. Формулы Шеннона и Хартли.
- 2.6. Понятие кода. Связь между информационной емкостью и средней длиной кода. Избыточность кодирования.
 - 2.7. Метод сжатия по Хаффману. Код Хэмминга

Раздел 3. Математические основы криптографии

- 3.1. Множества и отношения. Бинарные отображения.
- 3.2. Основная теорема арифметики. Алгоритм деления в Z.
- 3.3. Понятие группы. Изоморфизмы групп.

- 3.4. Понятие и свойства колец. Кольцо вычетов.
- 3.5. Понятие поля. Поля Галуа.
- 3.6. Кольца многочленов. Алгоритм деления в A[X]. Разложение в кольце многочленов. Неприводимые многочлены.
 - 3.7. Китайская теорема об остатках
 - 3.8. Эллиптические кривые.

Раздел 4. Криптографические методы защиты информации

- 4.1. Понятие симметричных алгоритмов шифрования.
- 4.2. Обзор классических симметричных алгоритмов. Моноафавитный шифр. Шифр Гронсфельда. Шифр Плейфейера. Шифр Хилла. Одноразовый блокнот. Перестановочные шифры.
 - 4.3. Диффузия и коффузия. Схема Файстеля.
- 4.4. Обзор современных симметричных алгоритмов шифрования. Шифр DES. Шифр AES.
 - 4.5. Режимы функционирования блочных шифров.
 - 4.6. Скремблеры.
 - 4.7. Виды криптоанализа симметричных алгоритмов.
 - 4.8. Шифрование с открытым ключом. Алгоритм RSA.
 - 4.9. Понятие и свойства хэш-функции. Электронная шифровая подпись.
- 4.10. Обзор современных отечественных и зарубежных стандартов шифрования и ЭЦП.
 - 4.11. Понятие криптографического протокола.
- 4.12. Протоколы обмена ключами. Алгоритм Диффи-Хеллмана. Атака «человек посередине».
 - 4.13. Алгоритмы генерации псевдослучайных последовательностей.

Раздел 5. Идентификация и аутентификация

- 5.1. Понятия идентификации и аутентификации. Виды аутентификации. Типология протоколов аутентификации.
- 5.2. Строгая односторонняя аутентификация на основе случайных чисел. Строгая двусторонняя аутентификация на основе случайных чисел. Аутентификация на основе асимметричного алгоритма.
 - 5.3. Протокол Kerberos.
- 5.4. Механизмы аутентификации при осуществлении подключений. Протокол PPP CHAP. Протокол PPP EAP. Стандарт IEEE 802.1x

5.5. Аутентификация в защищенных соединениях. Протоколы SSL, TLS, SSH, S-HTTP, SOCKS. Семейство протоколов IPSec.

Раздел 6. Протоколирование и аудит

- 6.1. Понятие и назначение протоколирования и аудита. Подход к протоколированию в «Оранжевой книге».
- 6.2. Активный аудит. Сигнатура атаки. Функциональные компоненты и архитектура систем активного аудита.

Раздел 7. Компьютерные вирусы

- 7.1. Общие сведения о компьютерных вирусах. Структура вируса. Классификации вирусов.
- 7.2. Файловые вирусы и макровирусы. Загрузочные вирусы. Сетевые черви. Другие классы вредоносных программ: троянские кони, логические бомбы.
- 7.3. Технологии маскировки вирусов. Тенденции современных компьютерных вирусов.
- 7.4. Понятие антивируса. Методы обнаружения зараженных файлов. Обзор современных антивирусов.
 - 7.5. Развертывание системы антивирусной защиты.

Раздел 8. Средства защиты сети

- 8.1. Межсетевые экраны.
- 8.2. Виртуальные частные сети.
- 8.3. Системы обнаружения вторжений. Анализ защищенности системы.

Раздел 9. Средства и методы противодействия угрозам доступности информации

- 9.1. Понятие и основные угрозы доступности информации. Показатели эффективности системы. Коэффициент готовности.
- 9.2. Методы обеспечения отказоустойчивости. Нейтрализация отказов. Живучесть. Резервирование. Программное обеспечение промежуточного слоя.
- 9.3. Архитектурные принципы обеспечения обслуживаемости. Восстановление после отказов.

Раздел 10. Основные принципы построения систем защиты

- 10.1. Меры противодействия угрозам безопасности.
- 10.2. Принципы построения систем защиты.
- 10.3. Понятие и назначение модели безопасности.
- 10.4. Модель дискреционного доступа. Модель Белла-ЛаПадулы. Ролевая модель контроля доступа.
 - 10.5. Системы разграничения доступа

Раздел 11. Информационная безопасность с точки зрения технологии программирования

- 11.1. Основные принципы разработки безопасных систем.
- 11.2. Основные ошибки программирования. Причины и последствия переполнения буфера.
- 11.3. Анализ некоторых программных реализаций сервисов безопасности.

Раздел 12. Техника и методология атаки

- Стратегия злоумышленника. Внешний анализ системы. Сканирование портов. Методы определения программно-аппаратной конфигурации способы противодействия. Системы системы И автоматического сканирования.
- 12.2. Использование уязвимостей в программном обеспечении. Эксплойты. Примеры наиболее известных уязвимостей в современных компьютерных системах.
- 12.3. Виды популярных атак и средства противодейстивя. SQL-инъекции. Межсайтовый скриптинг.

5. Образовательные технологии, применяемые при освоении дисциплины

Для реализации компетентностного подхода в учебном процессе применяются следующие образовательные технологии:

- 1) при проведении лекционных занятий: информационные лекции, проблемные лекции, лекции беседы, лекции дискуссии, лекции с заранее запланированными ошибками;
- 2) при проведении практических занятий: традиционные занятия, занятия исследования, проблемные ситуации, ситуации с ошибкой;
- 3) при организации самостоятельной работы студентов: поиск и обработка информации, в том числе с использованием информационно-

телекоммуникационных технологий; исследование проблемной ситуации; постановка и решение задач из предметной области; отработка навыков применения стандартных методов к решению задач предметной области.

Успешное освоение материала курса предполагает большую самостоятельную работу студентов и руководство этой работой со стороны преподавателей. Применяются следующие формы контроля: устный опрос, проверка решения практических задач, контрольная работа.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуального обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения, проведение индивидуальных консультаций дополнительных ПО изучаемым теоретическим вопросам и практическим занятиям, оказание помощи при подготовке к промежуточной аттестации. Подготовка, при необходимости, учебных и контрольно-измерительных материалов в формах, доступных для изучения студентами с особыми образовательными потребностями (для студентов с нарушениями зрения учебные материалы подготавливаются с применением укрупненного шрифта, используются аудиозаписи занятий; для студентов с нарушением слуха предоставляются электронные лекции, печатные раздаточные материалы с заданиями для самостоятельной работы).

При необходимости, для подготовки к ответу на практическом занятии, студентам с инвалидностью и студентам с ограниченными возможностями здоровья среднее время увеличивается в 1,5–2 раза по сравнению со средним временем подготовки обычного студента.

Для студентов с инвалидностью или с ограниченными возможностями здоровья форма промежуточной аттестации устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). Промежуточная аттестация по дисциплине может проводиться в несколько этапов в форме рубежного контроля по завершению изучения отдельных тем дисциплины.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Самостоятельная внеаудиторная работа студентов проводится в форме изучения и анализа лекционного материала, изучения отдельных теоретических вопросов по предлагаемой литературе, подбора дополнительных источников для извлечения научно-технической

информации, связанной с проблемами, изучаемыми в рамках данной дисциплины и решения задач с дальнейшим их разбором или обсуждением на аудиторных занятиях, подготовки к промежуточной аттестации.

Самостоятельная аудиторная работа студентов проводится в форме самостоятельного решения задач на практических занятиях с дальнейшим их разбором и обсуждением; проведения контрольной работы; поиска решений проблемных ситуаций, предложенных на лекциях и практических занятиях; поиска и устранения ошибок, заложенных в представлении материала преподавателем и допущенных другими студентами.

Текущий контроль усвоения дисциплины «Математические основы информационной безопасности» проводится в форме устных опросов на лекционных и практических занятиях, практических задач, связанных с программированием, на практических занятиях, контрольных работ по темам «Комплексный защищенности анализ информационной организации», «Разработка политики безопасности и модели угроз для Примерные заданной организации», промежуточного тестрирования. варианты контрольных работ, задач и тестов содержатся в фонде оценочных средств текущего контроля и промежуточной аттестации по дисциплине.

Промежуточная аттестация по дисциплине «Математические основы информационной безопасности» проводится в форме зачета в 7 семестре и в форме экзамена в 8 семестре.

Список вопросов к устному зачету

- Свойства компьютерной информации, важные с точки зрения информационной безопасности: конфиденциальность, целостность и доступность.
 - Угрозы информационной безопасности.
 - Каналы утечки информации.
 - Неформальная модель нарушителя.
- Обзор стандартов и нормативно-правовой базы в сфере информационной безопасности.
- Сигналы, данные и методы получения информации. Свойства информации.
- Количество информации как мера уменьшения неопределенности знаний. Алфавитный подход к вычислению количества информации.
- Определение вероятности и основные правила вычисления количества информации.
 - Информационная модель Шеннона.

- Формулы Шеннона и Хартли.
- Понятие кода. Связь между информационной емкостью и средней длиной кода. Избыточность кодирования.
 - Метод сжатия по Хаффману.
 - Код Хэмминга
 - Множества и отношения. Бинарные отображения.
 - Основная теорема арифметики. Алгоритм деления в Z.
 - Понятие группы. Изоморфизмы групп.
 - Понятие и свойства колец. Кольцо вычетов.
 - Понятие поля. Поля Галуа.
- Кольца многочленов. Алгоритм деления в A[X]. Разложение в кольце многочленов. Неприводимые многочлены.
 - Китайская теорема об остатках
 - Эллиптические кривые.
 - Понятие симметричных алгоритмов шифрования.

Список вопросов к устному экзамену

- Обзор классических симметричных алгоритмов. Моноафавитный шифр. Шифр Гронсфельда. Шифр Плейфейера. Шифр Хилла. Одноразовый блокнот. Перестановочные шифры.
 - Диффузия и коффузия. Схема Файстеля.
- Обзор современных симметричных алгоритмов шифрования. Шифр DES. Шифр AES.
 - Режимы функционирования блочных шифров.
 - Скремблеры.
 - Виды криптоанализа симметричных алгоритмов.
 - Шифрование с открытым ключом. Алгоритм RSA.
 - Понятие и свойства хэш-функции.
 - Электронная шифровая подпись.
- Обзор современных отечественных и зарубежных стандартов шифрования и ЭЦП.
 - Понятие криптографического протокола.
- Протоколы обмена ключами. Алгоритм Диффи-Хеллмана. Атака «человек посередине».
 - Алгоритмы генерации псевдослучайных последовательностей.

- Понятия идентификации и аутентификации. Виды аутентификации. Типология протоколов аутентификации.
- Строгая односторонняя аутентификация на основе случайных чисел. Строгая двусторонняя аутентификация на основе случайных чисел. Аутентификация на основе асимметричного алгоритма.
 - Протокол Kerberos.
- Механизмы аутентификации при осуществлении подключений. Протокол PPP CHAP. Протокол PPP EAP. Стандарт IEEE 802.1x
- Аутентификация в защищенных соединениях. Протоколы SSL, TLS, SSH, S-HTTP, SOCKS. Семейство протоколов IPSec.
- Понятие и назначение протоколирования и аудита. Подход к протоколированию в «Оранжевой книге».
- Активный аудит. Сигнатура атаки. Функциональные компоненты и архитектура систем активного аудита.
- Общие сведения о компьютерных вирусах. Структура вируса. Классификации вирусов.
- Файловые вирусы и макровирусы. Загрузочные вирусы. Сетевые черви. Другие классы вредоносных программ: троянские кони, логические бомбы.
- Технологии маскировки вирусов. Тенденции современных компьютерных вирусов.
- Понятие антивируса. Методы обнаружения зараженных файлов. Обзор современных антивирусов.
 - Развертывание системы антивирусной защиты.
 - Межсетевые экраны.
 - Виртуальные частные сети.
 - Системы обнаружения вторжений. Анализ защищенности системы.
- Понятие и основные угрозы доступности информации. Показатели эффективности системы. Коэффициент готовности.
- Методы обеспечения отказоустойчивости. Нейтрализация отказов. Живучесть. Резервирование. Программное обеспечение промежуточного слоя.
- Архитектурные принципы обеспечения обслуживаемости. Восстановление после отказов.
 - Меры противодействия угрозам безопасности.
 - Принципы построения систем защиты.

- Понятие и назначение модели безопасности.
- Модель дискреционного доступа. Модель Белла-ЛаПадулы. Ролевая модель контроля доступа.
 - Системы разграничения доступа
 - Основные принципы разработки безопасных систем.
- Основные ошибки программирования. Причины и последствия переполнения буфера.
 - Анализ некоторых программных реализаций сервисов безопасности.
 - Стратегия злоумышленника.
 - Использование уязвимостей в программном обеспечении.
 - SQL-инъекции.
 - Межсайтовый скриптинг.

7. Данные для учета успеваемости студентов в БАРС

Таблица максимальных баллов по видам учебной деятельности.

1 00011		wite in the interest	IIDIII CONIUI	ob no biida	m j icomon A	CALL COLDING		
1	2	3	4	5	6	7	8	9
Семестр	Лекци и	Лаборато рные занятия	Практиче ские занятия	льная	Автоматизир ованное тестирование	виды учебной	Промежут очная аттестаци я	Итого
7	20	40	0	0	0	0	40	100
8	20	20	20	0	0	0	40	100

Программа оценивания учебной деятельности студента

7 семестр

Лекции

Оценивается посещаемость, активность, умение выделить главную мысль и др. Преподаватель выдает красивые именные карточки с изображением болот и равнин (а также островов) за попытки студентов сказать что-то умное и поучаствовать в дискуссии. В конце семестра карточки подсчитываются и пропорционально начисляются баллы. Максимальный балл (20) получает обладатель наибольшего числа карточек.

Лабораторные работы

Оценивается самостоятельность при выполнении работы, грамотность в оформлении, правильность выполнения и т.д. Заработать можно максимум 40

баллов, которые начисляются преподавателем за решение поставленных задач (программирование, работа в программах и т.д.)

Промежуточная аттестация

Проходит в виде устного ответа по билетам. Максимально возможный балл 40.

При проведении промежуточной аттестации ответ на «отлично» оценивается от 31 до 40 баллов; ответ на «хорошо» оценивается от 21 до 30 баллов; ответ на «удовлетворительно» оценивается от 11 до 20 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 7 семестр по дисциплине «Математические основы информационной безопасности» составляет 100 баллов.

Таблица пересчета полученной студентом суммы баллов по дисциплине «Математические основы информационной безопасности» за 7 семестр в оценку (зачет):

50 баллов и более	«зачтено»
меньше 50 баллов	«не зачтено»

8 семестр

Лекции

Оценивается посещаемость, активность, умение выделить главную мысль и др. Преподаватель выдает красивые именные карточки с изображением болот и равнин (а также островов) за попытки студентов сказать что-то умное и поучаствовать в дискуссии. В конце семестра карточки подсчитываются и пропорционально начисляются баллы. Максимальный балл (20) получает обладатель наибольшего числа карточек.

Лабораторные работы

Оценивается самостоятельность при выполнении работы, грамотность в оформлении, правильность выполнения и т.д. Заработать можно максимум 20 баллов, которые начисляются преподавателем за решение поставленных задач (программирование, работа в программах и т.д.)

Практические занятия

Оценивается самостоятельность при выполнении работы, грамотность в оформлении, правильность выполнения и т.д. Заработать можно максимум 20

баллов, которые начисляются преподавателем за решение поставленных задач (программирование, работа в программах и т.д.)

Промежуточная аттестация

Проходит в виде устного ответа по билетам. Максимально возможный балл 40.

При проведении промежуточной аттестации ответ на «отлично» оценивается от 31 до 40 баллов; ответ на «хорошо» оценивается от 21 до 30 баллов; ответ на «удовлетворительно» оценивается от 11 до 20 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 8 семестр по дисциплине «Математические основы информационной безопасности» составляет 100 баллов.

Таблица пересчета полученной студентом суммы баллов по дисциплине «Математические основы информационной безопасности» за 8 семестр в оценку (экзамен):

100-81 баллов	«отлично»
80-61 баллов	«хорошо»
60-41 баллов	«удовлетворительно»
40-0 баллов	«не удовлетворительно»

8. Учебно-методическое и информационное обеспечение дисциплины

- а) литература:
- Ярочкин В.И. Информационная безопасность [Текст] : учеб. для студентов вузов, обучающихся по гуманитар. и социал.-экон. специальностям / В. И. Ярочкин. М. : Гаудеамус : Акад. Проект, 2008.
- Информационная безопасность и защита информации [Текст] : учеб. пособие для студентов вузов / В. П. Мельников, С. А. Клейменов, А. М. Петраков. 4-е изд., стер. М. : Изд. центр "Академия", 2009.
- Информационная безопасность и защита информации [Электронный ресурс] : учебное пособие / Башлы П. Н. Москва: Евразийский открытый институт, 2012. -311 с. 978-5-374-00301-7

Книга находится в базовой версии ЭВС IPRbooks/

• А. А. Малюк. Информационная безопасность: концептуальные и методологические основы защиты информации [Текст]: учеб. пособие / А. А. Малюк. - М.: Горячая линия - Телеком, 2004.

• Информационная безопасность систем организационного управления. Теоретические основы [Текст] : в 2 т. / Н. А. Кузнецов [и др.] ; под ред. Н. А. Кузнецова, В. В. Кульбы ; Рос. акад. наук, Ин-т проблем передачи информ. - М. : Наука, 2006.

б) программное обеспечение и Интернет-ресурсы:

- OC Windows (лицензионное ПО) или ОС Unix/Linux (свободное ПО)
- Microsoft Office (лицензионное ПО) или Open Office/Libre Office (свободное ПО)
- Браузеры Internet Explorer, Google Chrome, Opera и др. (свободное ПО).
 - Среда программирования Java на платформе Eclipse (свободное ПО).
 - Портал по информационной безопасности http://www.securitylab.ru/
- Учебные ресурсы центра «Новые информационные технологии» http://nto.immpu.sgu.ru

8. Учебно-методическое и информационное обеспечение дисциплины

а) литература:

- Ярочкин В.И. Информационная безопасность [Текст] : учеб. для студентов вузов, обучающихся по гуманитар. и социал.-экон. специальностям / В. И. Ярочкин. М. : Гаудеамус : Акад. Проект, 2008.
- Информационная безопасность и защита информации [Текст] : учеб. пособие для студентов вузов / В. П. Мельников, С. А. Клейменов, А. М. Петраков. 4-е изд., стер. М. : Изд. центр "Академия", 2009.
- Информационная безопасность и защита информации [Электронный ресурс] : учебное пособие / Башлы П. Н. Москва: Евразийский открытый институт, 2012. -311 с. 978-5-374-00301-7

Книга находится в базовой версии ЭВС IPRbooks.

- б) программное обеспечение и Интернет-ресурсы:
- ОС Windows (лицензионное ПО) или ОС Unix/Linux (свободное ПО)
- Microsoft Office (лицензионное ПО) или Open Office/Libre Office (свободное ПО)
- Браузеры Internet Explorer, Google Chrome, Орега и др. (свободное ПО).
 - Среда программирования Java на платформе Eclipse (свободное ПО).
 - Портал по информационной безопасности http://www.securitylab.ru/
- Учебные ресурсы центра «Новые информационные технологии» http://nto.immpu.sgu.ru