МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ имени Н.Г. Чернышевского»

Балашовский институт (филиал)

СОГЛАСОВАНО

заведующий кафедрой

Сухорукова Е.В.

"_31_" августа 2022 г.

УТВЕРЖДАЮ председатель НМК БИ СГУ

Мазалова М. А.

31 " августа 2022 г.

Фонд оценочных средств

для текущего контроля и промежуточной аттестации по дисциплине

Алгебра и теория чисел

Направление подготовки бакалавриата **44.03.05** Педагогическое образование (с двумя профилями подготовки)

Профили подготовки бакалавриата **Математика и физика**

Квалификация (степень) выпускника **Бакалавр**

Форма обучения

Очная

Балашов 2022

Карта компетенций

Контролируемые компетенции (шифр компетенции (шифр компетенции) ПК-1 Способен осуществлять педагогическую деятельность по профильным предметам (дисциплинам, модулям) в рамках основных образовательных программ общего образования, по программам дополнительного образования детей и взрослых	Индикаторы достижения компетенций 1.1_Б.ПК-1. Осуществляет преподавание учебных дисциплин по профилю (профилям) подготовки в рамках основных образовательных программ общего образования соответствующего уровня.	Планируемые результаты обучения (знает, умеет, владеет, имеет навык) В категории «ЗНАТЬ» З_1.1_Б.ПК-1. Владеет системой предметных знаний, составляющих содержание образования на соответствующем уровне общего образования (по профилю подготовки). В категории «ВЛА-ДЕТЬ» В_1.2_Б.ПК-1. Владеет навыком решения задач /	Виды заданий и оценочных средств Проверочная работа Тестирование
	3.1_Б.ПК-1. Владеет системой научных знаний в соответствующей предметной области (по профилю подготовки).	выполнения практических заданий из школьного курса; обосновывает выбор способа выполнения задания. В категории «ЗНАТЬ» 3.1_Б.ПК-1. Владеет системой научных знаний в соответствующей предметной области (по профилю подготовки).	Проверочная работа Тестирование
УК-1 Способен осуществлять поиск, критический ана- лиз и синтез информа- ции, применять систем- ный подход для решения поставленных задач;	1.1_Б.УК-1. Анализирует задачу, выделяя ее базовые составляющие. Осуществляет декомпозицию задачи.	В категории «ЗНАТЬ» 3_1.1_Б.УК-1. Знает типовую (инвариантную) структуру задачи и возможные варианты реализации этой структуры; знает различные типологии задач, понимает классификационные признаки, лежащие в основе этих типологий; осознает особенности решения задач различных типов. В категории «УМЕТЬ» У_3.3_Б.УК-1. Умеет использовать при выдвижении и обсуждении вариантов решения задачи возможности технологии развития критического мышления, различные формы организации дискуссии.	Проверочная работа Тестирование

	У_1.1_Б.УК-1. Умеет ана-	
	лизировать задачу, выде-	
	лять условие и задание	
	(вопрос), соотносить	
	предложенную задачу с	
	тем или иным известным	
	типом, определять необ-	
	ходимые для решения за-	
	дачи знания, умения, до-	
	полнительные сведения.	
	полнительные сведения.	
3.1 Б.УК-1. Рассматри-	В категории «ЗНАТЬ»	Проверочная
вает различные варианты	3_3.1_Б.УК-1. Знает спо-	работа
решения задачи, оцени-	собы решения типовых	Тестирование
вая их достоинства и не-	задач из конкретной обла-	
достатки.	сти знания, называет эти	
	способы, комментирует	
	выбор.	
	В категории «УМЕТЬ» У_3.1_ Б.УК-1. При ре-	
	шении нестандартных за-	
	дач (повышенной сложно-	
	сти, междисциплинарных,	
	творческих и т. п.) предла-	
	гает способы решения на	
	основе имеющихся знаний	
	и умений.	
	У_3.2_ Б.УК-1. Сравнива-	
	ет различные способы ре-	
	шения задачи, оценивая их	
	особенности (валидность,	
	трудоемкость, необходи-	
	мость привлечения допол-	
	нительных ресурсов и т.	
	д.).	

Показатели оценивания результатов обучения

Показатели оценивания результатов обучения ориентированы на шкалу оценивания, установленную в балльно-рейтинговой системе, принятой в СГУ имени Н. Г. Чернышевского.

Семестр	Шкала оценивания					
	не зач	тено		зачтено		
1 семестр	Студент демонстрирует низкий уровень достижения результатов. Не более 50% объёма заданий для текущего и промежуточного контроля выполнены без ошибок.		урс объ ног	Студент демонстрирует удовлетворительный уровень достижения результатов. Более 50% объёма заданий для текущего и промежуточного контроля выполнены без ошибок.		
	Шкала оценивания					
	2	3		4	5	
2 семестр	Студент демонстрирует низкий уровень достижения результатов. Не более 50% объёма заданий для текущего и промежуточного контроля выполнены без ошибок.	Студент демонстрирует удовлетворительный урвень достижения результатов. Бол 50% объёма заданий для текущего промежуточного контроля выполны без ошибок.	ю- ее - о и	Студент демон- стрирует хороший уровень достиже- ния результатов. Не менее 71% объёма заданий для теку- щего и промежу- точного контроля выполнены без ошибок.	Студент демон- стрирует высокий уровень достиже- ния результатов. Не менее 85% объёма заданий для теку- щего и промежу- точного контроля выполнены без ошибок.	
3 семестр	Студент демонстрирует низкий уровень достижения результатов. Не более 50% объёма заданий для текущего и промежуточного контроля выполнены без ошибок.	Студент демонстрирует удовлетворительный урвень достижения результатов. Бол 50% объёма заданий для текущего промежуточного контроля выполны без ошибок.	ю- ее - о и	Студент демон- стрирует хороший уровень достиже- ния результатов. Не менее 71% объёма заданий для теку- щего и промежу- точного контроля выполнены без ошибок.	Студент демон- стрирует высокий уровень достиже- ния результатов. Не менее 85% объёма заданий для теку- щего и промежу- точного контроля выполнены без ошибок.	

Оценочные средства

1. Задания для текущего контроля

По дисциплине

Задания для текущего контроля по дисциплине носят комплексный характер и направлены на проверку сформированности компетенций УК-1, ПК-1.

В соответствии с принятой в СГУ имени Н. Г. Чернышевского балльно-рейтинговой системой учета достижений студента (БАРС) баллы, полученные в ходе текущего контроля, распределяются по следующим группам:

- самостоятельная работа;
- другие виды учебной деятельности.

САМОСТОЯТЕЛЬНАЯ РАБОТА: от 0 до 40 баллов за семестр.

1. Самостоятельная работа Самостоятельная работа №1 Демонстрационный вариант

1. Вычислить, если это возможно, 2А – 3В, АВ, ВА при условии:

a)
$$A = \begin{pmatrix} 2 & 1 \\ 3 & -3 \\ 5 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & 3 \end{pmatrix}$;
6) $A = \begin{pmatrix} 4 & 2 & -1 \\ 0 & 1 & -4 \\ 4 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -1 & -2 & 2 \\ 4 & 3 & -2 \\ 4 & 4 & 2 \end{pmatrix}$.

2. Решить систему уравнений методом Крамера, сделать проверку:

$$\begin{cases} 2x - 3y = 5, \\ 5x + 6y = -7. \end{cases}$$

Самостоятельная работа №2 Демонстрационный вариант

1. Решить систему уравнений:
$$\begin{cases} 3x_1 + 4x_2 + x_3 + 2x_4 = 3 \\ 6x_1 + 8x_2 + 2x_3 + 5x_4 = 7 \\ 9x_1 + 12x_2 + 3x_3 + 10x_4 = 13. \end{cases}$$

2. Исследовать и решить систему уравнений в зависимости от значения

параметра
$$\lambda: \begin{cases} \lambda x_1 + x_2 + 2x_3 + 3x_4 = 1, \\ x_1 + \lambda x_2 + 3x_3 + 2x_4 = 1, \\ x_1 + x_2 + x_3 + 4x_4 = 1, \\ x_1 + x_2 + 4x_3 + x_4 = \lambda. \end{cases}$$

Самостоятельная работа №3 Демонстрационный вариант Найти общее решение, фундаментальную систему решений, сделать проверку:

$$\begin{cases} 2x_1 - 4x_2 + 5x_3 + 3x_4 = 0, \\ 3x_1 - 6x_2 + 4x_3 + 2x_4 = 0, \\ 4x_1 - 8x_2 + 17x_3 + 11x_4 = 0. \end{cases}$$

Самостоятельная работа №4

Алгебраическая форма комплексного числа

Демонстрационный вариант

- 1. Вычислить: a) $(\sqrt{3} i)(\sqrt{2} i\sqrt{3});$ 6) $\frac{6}{3 5i};$
- 2. Найти x и y, считая их вещественными: (4-i)x+(2+5i)y=8+9i.

Самостоятельная работа №5

Тригонометрическая форма комплексного числа

Демонстрационный вариант

- 1. Представить в тригонометрической форме следующие числа: a) 1+i; б) $\sqrt{3}-i$.
- 2. Вычислить, пользуясь формулой Муавра: $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$.

Самостоятельная работа №6

Линейные операторы

Демонстрационный вариант

В двумерном евклидовом пространстве дан ортонормированный базис $\{e_1, e_2\}$ и линейный оператор φ , который вектор e_1 растягивает вдвое и поворачивает на угол π , а вектор e_2 поворачивает по часовой стрелке на угол $\frac{\pi}{2}$. Найти образ вектора $a=2e_1+3e_2$ под действием оператора φ .

Самостоятельная работа №7

Ортонормированный базис

Демонстрационный вариант

1. Построить ортонормированный базис подпространства, натянутого на систему век-TOPOB: $a_1(1;1;1;1), a_2(1;-1;1;4), a_3(1;3;1;-2), a_4(1;2;0;2)$

Самостоятельная работа № 8

Конечные цепные дроби

Демонстрационный вариант

1. Разложить в цепную дробь и свернуть с помощью подходящих:

$$a)\frac{539}{103};$$
 $6)\frac{2517}{773};$ $B)-\frac{55}{117}$ 2. Решить в целых числах уравнения:

3. a)
$$142x + 82y = 6$$
;

6)
$$7x - 19y = 23$$
.

Самостоятельная работа № 9

Систематические числа

Демонстрационный вариант

Записать числа 2013 и 65147 в системе счисления с основанием 5 и разделить большее на меньшее.

Самостоятельная работа № 10 Демонстрационный вариант

Транспортной организации, имеющей грузовые машины грузоподъёмностью 3,5 и 4,5 т, предложено перевезти 53 т груза. Определить, сколько машин того и другого типа должен выделить диспетчер для перевозки указанного груза одним рейсом при условии полного использования грузоподъёмности всех выделенных автомашин.

4. Решить сравнение (разными способами): $78x \equiv 30 \pmod{198}$.

Самостоятельная работа №11 Демонстрационный вариант

- 1. Определите длину периода десятичной дроби, в которую обращаются обыкновенные несократимые дроби со знаменателем, равным 35.
- 2. Проверьте результаты арифметических действий по модулю 9 и по модулю 11: а)

$$4237 \times 27925 = 111275855$$
; 6) $\frac{42981}{8264} = 5201$.

Самостоятельная работа на практическом занятии предназначена для оперативного контроля успеваемости, занимает 20-30% времени практического занятия. Планируется 10 самостоятельных работ при освоении дисциплины.

Оценка за самостоятельную работу выставляется в соответствии со следующими критериями:

- оценка «отлично» (5 баллов) 80-100% правильно решенных заданий;
- оценка «хорошо» (4 балла) 65-79% правильно решенных заданий;
- оценка «удовлетворительно» (3 балла) 50 -64% правильно решенных заданий;
- оценка «неудовлетворительно» 49% и менее правильно решенных заданий.

2. Контрольная работа

Контрольная работа № 1 (индивидуальное задание)

«Матрицы, определители. Системы линейных уравнений»

Демонстрационный вариант

№1. Найти а, если определитель равен 91:

$$\begin{bmatrix} 2 & -1 & 1 & -2 \\ 3 & -3 - 1 & 4 \\ -2 & \alpha & -3 - 1 \\ -3 & 3 & -2 & 1 \end{bmatrix}.$$

№2. Вычислить определитель (используя свойства):

№3. Обратить матрицу
$$\begin{pmatrix} -1 & 4 & 4 \\ -2 & -4 & 3 \\ -4 & 1 & 4 \end{pmatrix}$$
 с помощью определителей.
№4. Перемножить матрицы $\begin{pmatrix} 4 & -3 & -2 \\ -1 & 1 & -1 \\ 1 & 2 & -4 \end{pmatrix}$ и $\begin{pmatrix} -2 & -4 & 2 \\ -4 & 2 & 1 \\ 3 & -4 & -3 \end{pmatrix}$.
№5. Решить систему уравнений методом Крамера:

№5. Решить систему уравнений методом Крамера:

$$\begin{cases}
-3x + 4y - 2 = -14, \\
3x - 4y + 4z = 6, \\
3x + y + 3z + 10 = 0.
\end{cases}$$

№6. Решить уравнение
$$XA = B$$
, где $A = \begin{pmatrix} 1 & 2 & -4 \\ -3 & -4 & -4 \\ -4 & 3 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} 11 & -18 & 4 \\ -12 & 16 & 0 \\ 0 & -16 & -8 \end{pmatrix}$, с по-

мощью элементарных преобразований.

№7. Исследовать и решить систему уравнений методом Гаусса, сделать проверку:

a)
$$\begin{cases} -x + 2y - 2z + t = 2, \\ x - y + 2z - 4t = -2, \\ 2x - y - 3z - t = 10, \\ -3x + 4y - 4z - 3t = 2; \end{cases}$$
b)
$$\begin{cases} -x + 2y - 2z + t = 2, \\ x - y + 2z - 4t = -2, \\ 2x - y - 3z - t = 10, \\ -3x + 4y - 4z - 3t = 2; \end{cases}$$
c)
$$\begin{cases} -3x - y + 3z + 2t = 12, \\ x - 3y - 4z - 2t = -3, \\ 4x + y + 3z + 4t = 5, \\ 3y + 10z + 8t - 21 = 0; \end{cases}$$
b)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 7, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 12, \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = -2, \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 23. \end{cases}$$

№8. Выясните, какие значения должны принимать i и j, чтобы произведение $a_{17}a_{23}a_{31}a_{4i}a_{54}a_{66}a_{7j}a_{82}a_{99}$ входило в определитель девятого порядка:

а) со знаком «плюс»; б) со знаком «минус».

№9. Вычислите ранг матрицы

$$\begin{pmatrix}
4 & -2 & 3 & 0 \\
3 & 7 & 0 & -8 \\
2 & -5 & -3 & 3 \\
7 & 4 & 4 & -3
\end{pmatrix}$$

- а) методом окаймляющих миноров с указанием базисного минора;
- б) методом элементарных преобразований.

Контрольная работа №2 Демонстрационный вариант

- 1. Выяснить линейную зависимость системы векторов, найти один из ее базисов и выразить через него остальные векторы системы. $a_1(1;2;3;-4), a_2(2;3;-4;1), a_3(2;-5;8;-3), a_4(5;26;-9;-12), a_5(3;-4;1;2).$
- 2. Найти размерности и базисы подпространств $A,B,A+B,A\cap B$, где $A\langle a_1,a_2\rangle,B\langle b_1,b_2\rangle$, и выяснить, принадлежит ли вектор x(3;-2;0;4) одному из этих подпространств, если $a_1(1;2;-2;1),a_2(1;3;0;0),b_1(-1;2;0;1),b_2(0;1;2;-1)$.

Контрольная работа № 3 Поле комплексных чисел

Демонстрационный вариант

- 1. Вычислить значение выражения: $\frac{\left(-2+2i\right)^4}{\left(1+i\right)^3}+2i-5+\frac{1}{3+i}.$
- 2. Решить уравнение над полем комплексных чисел: $x^2 3x + 3 + i = 0$.
- 3. Точки, изображающие числа z_1 и z_2 , находятся соответственно в III и II координатных углах. Учитывая, что $|z_1|=3$, а $|z_2|=6$ найти точки, изображающие следующие числа: а) $(z_2-\bar{z}_1)\cdot z_1$; б) $-3+i+\frac{z_2}{z_1}$.

- 4. Представить число $z = \sin \frac{\pi}{5} i \cos \frac{\pi}{5}$ в тригонометрической форме.
- 5. Найти все значения корня $\sqrt[5]{4-4i}$ и построить их геометрическое изображение.

Контрольная работа № 4

Линейные отображения

Демонстрационный вариант

1. Линейное отображение φ пространства R^2 в базисе $a_1=(2;1), a_2=(1;1)$ имеет матрицу

$$A_a = \begin{pmatrix} 3 & 5 \\ 2 & 3 \end{pmatrix},$$

а линейное отображение ψ пространства R^2 в базисе $b_1=(5;2), b_2=(1;0)$ имеет матрицу

$$B_b = \begin{pmatrix} 7.5 & 3.5 \\ 4.5 & 1.5 \end{pmatrix}.$$

Найдите матрицы отображений $\varphi + \psi$ и $\varphi \cdot \psi$ в базисе b_1, b_2 .

2. а) Найдите ядро, ранг и область значений линейного отображения ϕ пространства M_2 действительных матриц порядка 2 над полем R , если ϕ задано матрицей

$$A = \begin{pmatrix} 1 & 3 & 5 & 1 \\ 2 & 1 & 3 & 1 \\ 4 & 7 & 13 & 1 \\ 3 & -1 & 1 & 1 \end{pmatrix}$$

в базисе

$$e_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

б) Выясните, принадлежит ли вектор

$$y = egin{pmatrix} -22 & -40 \\ 2 & 10 \end{pmatrix}$$
из M_2 подпространству $\mathit{Ker}\, \varphi$.

3. Найдите собственные значения и собственные векторы линейного отображения ϕ пространства R^4 над полем R , заданного в некотором базисе матрицей

$$A = \begin{pmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & -5 & -3 \\ 4 & -1 & 3 & 1 \end{pmatrix}.$$

4. Выясните, можно ли матрицу

$$A = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

линейного отображения ϕ действительного пространства L привести к диагональному виду путём перехода к новому базису и, если можно, то найдите этот базис и соответствующую ему диагональную матрицу.

Контрольная работа № 5

Теория делимости в кольце целых чисел

Демонстрационный вариант

- 1. Запишите данные систематические дроби в виде обыкновенных в той же системе счисления:а) $0.87(102)_9$; б) $0.7(5)_8$.
- 2. Найдите наибольший общий делитель чисел 4081, 4972, 3377.
- 3. Представьте наибольший общий делитель чисел 646 и 976 в виде их линейной комбинации.
- 4. Найдите наименьшее общее кратное чисел 1910 и 1540.
- 5. Найдите каноническое разложение числа 125!
- 6. Разложите в цепную дробь и замените подходящей дробью с точностью до 0,001 число $\frac{2517}{2000}$.
- 773
- 7. Найдите действительное число α , которое обращается в цепную дробь [(1;3)].
- 8. Для перевозки зерна имеются мешки вместимостью 60кг и 80 кг. Определите, какое количество мешков одной и другой вместимости необходимо для перевозки 440 кг зерна.

Контрольная работа № 6

Теория сравнений с арифметическими приложениями.

Демонстрационный вариант

- 1. Решите с помощью теоремы Эйлера сравнение $78x \equiv 30 \pmod{198}$.
- 2. Решите с помощью цепных дробей сравнение $111x \equiv 147 \pmod{87}$.
- 3. Решите систему сравнений

$$\begin{cases} 2x \equiv 31 \pmod{35}, \\ 4x \equiv 7 \pmod{25}, \\ 5x \equiv 18 \pmod{21}. \end{cases}$$

- 4. Найдите первообразный корень по модулю 53.
- 5. Решите с помощью индексов сравнение $23^x \equiv 37 \pmod{41}$.
- 6. Найдите остаток от деления 14^{245} на 90.

Контрольная работа проводится в запланированное время (планируется 6 контрольных работ при освоении дисциплины) и предназначена для оценки знаний, умений и навыков, приобретенных в процессе теоретических и практических занятий курса. Контрольная работа №1 проводится по индивидуальным вариантам, количество различных вариантов совпадает с количеством студентов в группе. Студенты отчитываются за каждое задание своего варианта.

Оценка за контрольную работу выставляется в соответствии со следующими критериями:

- оценка «отлично» (5 баллов) 80-100% правильно решенных заданий;
- оценка «хорошо» (4 балла) 65-79% правильно решенных заданий;
- оценка «удовлетворительно» (3 балла) 50 -64% правильно решенных заданий;
- оценка «неудовлетворительно» 49% и менее правильно решенных заданий.

3. Тесты

1. На множестве $X = \{1, 2, 3, 4\}$ заданы бинарные отношения

I.
$$\rho_1 = \{ (2, 2), (4, 4), (1, 2), (3, 4) \}$$

II.
$$\rho_2 = \{ (1, 1), (2, 3), (3, 2), (2, 2), (3, 3), (4, 4) \}$$

III.
$$\rho_3 = \{ (1, 1), (2, 2), (3, 3), (4, 4), (3, 2) \}$$

Какое из них является отношением эквивалентности? Построить фактор-множество.

Варианты ответа:

- 1) ρ_1
- 2) ρ_1, ρ_2
- 3) ρ_2
- 4) ρ_{3}
- 5) ρ_1, ρ_2, ρ_3

2. Пусть * - бинарная операция на множестве натуральных чисел: a*b=HOД(a, b). Какое из следующих утверждений справедливо:

I. * коммутативна; II. * ассоциативна; III. * имеет нейтральный элемент

IV. *обратима?

Варианты ответа:

- 1) I и III
- 2) только III
- 3) только II
- 4) только I и II
- 5) I, II и IV

3. На множестве Z задано бинарное отношение $\omega: x\omega y \Leftrightarrow x : y$.

Какие из следующих утверждений верны:

- $I. \omega$ отношение порядка
- II. ω не является отношением порядка
- III. ω отношение линейного порядка?

Варианты ответа:

- 1) только І
- 2)I и III
- 3) II
- 4. Какие из указанных алгебр являются группами:
- I. $\langle Z, \rangle$; II. $\langle 2Z, + \rangle$; III. $\langle A, + \rangle$, где $A = \{0, 1\}$; IV. $\langle B, \cdot \rangle$, где $B = \{-1, 1\}$?

Варианты ответа:

- 1) только І
- 2) только II и III
- 3) только II и IV
- 4) только II
- 5) I, II и III
- 5. Какие из следующих числовых алгебраических систем являются кольцами: $N = \langle N, +, \cdot \rangle$, $2N = \langle 2N, +, \cdot \rangle$, $R = \langle R, +, \cdot \rangle$, $C = \langle C, +, \cdot \rangle$

Варианты ответа:

1) N; 2) 2N; 3) R;C; 4) R; 2N.

6. Какие из следующих числовых алгебраических систем являются полями: $N = \langle N, +, \cdot \rangle$,

$$Z = \langle 2N, +, \cdot \rangle, Q = \langle Q, +, \cdot \rangle, C = \langle C, +, \cdot \rangle$$
?

Варианты ответа:

 $\overline{1)} \, \overline{Z}; \quad 2) \, \overline{Q}; \, C; \, 3) \, Z; \, N; \, 4) \, N; \, C.$

7. Указать биективные отображения:

a)
$$f_1(x) = x^2$$
 на множестве R ;

б)
$$g(x) = 2x + 1$$
 на множестве R ;

в)
$$v(x) = x^2$$
 на множестве R^+ ;

г)
$$f_2(x) = -3x$$
 на множестве R .

Варианты ответа:

1)
$$g, v, f_2$$
; 2) g ; 3) g, v ; 4) g, f_2 .

8. Определить количество элементов во множество $A \times B$, если $A = \{a,b,c\}, B = \{1;2;7\}$ Варианты ответа:

9. Верно ли соотношение $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$?

Варианты ответа:

1) нет; 2) да

10. Пусть
$$A = \{x | x^2 - x - 2 \le 0\}, B = \{x | \frac{-x+1}{x+1} \ge 0\}$$
. Найти $A \setminus B$.

Варианты ответа:

1)
$$(-\infty;-1);$$
 2) $\{-1\}\cup(1;2];$ 3) $(-1;1];$ 4) $(1;2]$

11. Определить количество подмножеств множества $A = \{a_1, a_2, ... a_{10}\}$.

Варианты ответа:

- 1) 1024; 2) 100; 3) 1025; 4) 50.
- 12. Сколько отношений эквивалентности можно задать на множестве $A = \{a_1, a_2, a_3\}$?

Варианты ответа:

Методические рекомендации по выполнению теста

Контрольно-измерительные материалы проверяют остаточные знания студента. Тестовые задания направлены на применение усвоенных ранее знаний в типовых ситуациях. Число вариантов ответов на каждое задание — от двух до пяти. Число заданий в тестовом варианте — 12. Продолжительность сеанса тестирования — не более 60 минут. Рекомендуемое число различных вариантов каждого вопроса — не менее 3-х. Студенты получают оценки:

- оценка «отлично» (5 баллов) 80-100% правильно решенных заданий;
- оценка «хорошо» (4 балла) 65-79% правильно решенных заданий;
- оценка «удовлетворительно» (3 балла) 50 -64% правильно решенных заданий;
- оценка «неудовлетворительно» 49% и менее правильно решенных заданий.

Задания для промежуточной аттестации

1. Список вопросов к экзамену / зачёту

Перечень вопросов к зачету

1 семестр

- 1. Множество. Подмножество. Операции над множествами и их основные свойства. Диаграммы Эйлера-Венна.
- 2. Понятие упорядоченной пары. Прямое произведение множеств. Бинарные (n арные) отношения.
- 3. Отношение эквивалентности. Разбиение множества на классы эквивалентности. Фактор-множество.
 - 4. Отношение порядка. Отношение линейного порядка.
 - 5. Понятие функции. Композиция функций.
- 6. Понятие алгебраической операции. Виды элементов: нейтральный, обратный, нулевой, идемпотентный.
 - 7. Алгебра. Подалгебра.
 - 8. Гомоморфизмы и изоморфизмы алгебр.
 - 9. Понятие группы. Примеры групп. Простейшие свойства.
 - 10. Понятие кольца. Подкольцо. Простейшие свойства.
 - 11. Гомоморфизм и изоморфизм колец
 - 12. Поле. Примеры. Простейшие свойства.
 - 13. Упорядоченное поле. Примеры. Простейшие свойства.
 - 14. Система действительных чисел. Простейшие свойства.
 - 15. Поле комплексных чисел.
 - 16. Понятие числового поля. Наименьшее подполе числового поля.
 - 17. Геометрическая интерпретация комплексных чисел и операций над ними.
- 18. Тригонометрическая форма комплексного числа. Действия над комплексными числами, заданными в тригонометрической форме.
 - 19. Корни из комплексных чисел.
- 20. Мультипликативная группа корней из единицы. Первообразные корни из единицы.
 - 21. Двучленные уравнения.
 - 22. Операции над матрицами, их свойства. Аддитивная группа матриц над полем Р.
 - 23. Ассоциативность умножения матриц.
 - 24. Кольцо квадратных матриц над полем P.
 - 25. Группа подстановок. Свойства. Чётность и знак подстановки.
 - 26. Определитель квадратной матрицы. Вычисление определителей 2, 3 порядков.
 - 27. Основные свойства определителей.
 - 28. Миноры и алгебраические дополнения. Разложение по строке или столбцу.
 - 29. Обратная матрица.

Перечень вопросов к экзамену

2 семестр

- 1. Векторное пространство. Определение. Примеры. Простейшие свойства.
- 2. Арифметическое векторное пространство.
- 3. Подпространство. Линейная оболочка.
- 4. Сумма, прямая сумма подпространств. Линейное многообразие.
- 5. Линейная зависимость (независимость) системы векторов.
- 6. Базис и ранг системы векторов.
- 7. Координатная строка (столбец) вектора относительно данного базиса. Размерность векторного пространства.

- 8. Дополнение системы векторов до базиса.
- 9. Ранг матрицы. Теорема о базисном миноре.
- 10. Изоморфизм векторных пространств одинаковой размерности.
- 11. Векторное пространство со скалярным умножением. Простейшие свойства.
- 12. Ортогональная система векторов. Линейная независимость ортогональной системы ненулевых векторов.
 - 13. Дополнение ортогональной системы векторов до ортогонального базиса.
 - 14. Процесс ортогонализации.
- 15. Ортогональное дополнение к подпространству. Разложение пространства в прямую сумму подпространства и ортогонального дополнения к нему.
 - 16. Евклидово векторное пространство.
 - 17. Норма вектора. Ортонормированный базис евклидова пространства.
 - 18. Изоморфизм евклидовых пространств одинаковой размерности.
- 19. Совместные, несовместные системы линейных уравнений. Теорема Кронекера-Капелли.
- 20. Пространство решений системы однородных линейных уравнений. Фундаментальная система решений.
- 21. Правило Крамера. Условия существования нетривиальных решений системы n однородных линейных уравнений с n переменными.
 - 22. Неоднородная система линейных уравнений. Линейное многообразие решений.
- 23. Решение системы линейных уравнений методом последовательного исключения переменных. Понятие общего решения системы линейных уравнений.
 - 24. Линейные отображения векторных пространств; примеры.
 - 25. Ядро и образ линейного отображения.
- 26. Матрица линейного оператора. Связь между координатными столбцами векторов x и $\varphi(x)$.
- 27. Связь между координатными столбцами вектора относительно различных базисов.
- 28. Связь между матрицами линейного оператора относительно различных базисов; подобие матриц.
 - 29. Обратимые линейные операторы.

Перечень вопросов к экзамену 3 семестр

- 1. Отношение делимости, его простейшие свойства.
- 2. Количество и сумма натуральных делителей числа.
- 3. Теорема о делении с остатком и её приложения.
- 4. Систематические числа. Перевод чисел из одной системы счисления в другую
- 5. Простые числа. Бесконечность множества простых чисел.
- 6. Решето Эратосфена.
- 7. Разложение целых чисел на простые множители и его единственность.
- 8. Наибольший общий делитель.
- 9. Взаимно простые числа.
- 10. Наименьшее общее кратное.
- 11. Алгоритм Евклида и его приложения.
- 12. Распределение простых чисел. Неравенство Чебышёва.
- 13. Цепные дроби. Представление чисел цепными дробями.
- 14. Сравнения в кольце целых чисел. Свойства.
- 15. Полная система вычетов.
- 16. Аддитивная группа классов вычетов.
- 17. Кольно классов вычетов.

- 18. Приведённая система вычетов.
- 19. Мультипликативная группа классов вычетов, взаимно простых с модулем.
- 20. Функция Эйлера. Теоремы Эйлера и Ферма.
- 21. Сравнения первой степени с одной переменной. Решение сравнений с помощью теоремы Эйлера.
- 22. Сравнения первой степени с одной переменной. Решение сравнений с помощью цепных дробей.
 - 23. Сравнения высших степеней.
 - 24. Показатель (порядок) числа и классы вычетов по модулю.
 - 25. Существование первообразных корней по простому модулю.
 - 26. Индексы по простому модулю.
 - 27. Двучленные сравнения по простому модулю.
 - 28. Таблицы индексов и их применение.
 - 29. Понятие о степенных вычетах.
 - 30. Квадратичные вычеты и невычеты. Символ Лежандра. Критерий Эйлера.
- 31. Арифметические приложения теории сравнений: нахождение остатков при делении.
- 32. Арифметические приложения теории сравнений: признаки делимости. Общий признак делимости Паскаля.
- 33. Арифметические приложения теории сравнений: проверка результатов арифметических действий с помощью 9 и 11.
- 34. Арифметические приложения теории сравнений: длина периода систематической дроби.

ФОС для проведения промежуточной аттестации одобрен на заседании кафедры математики, информатики, физики_(Протокол № 1_ от «31» _ августа _ 2022 года).

Автор – Насонова Е.Д.