МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Балашовский институт (филиал)

Рабочая программа дисциплины

Химия окружающей среды

Направление подготовки

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Профили подготовки **Биология и химия**

Квалификация (степень) выпускника **Бакалавр**

Форма обучения

Очная

Балашов 2021

Статус	Фамилия, имя, отчество	Подпись	Дата
Преподаватель- разработчик	Занина Марина Анатольевна	A	31.08.212
Председатель НМК	Мазалова Марина Алексеевна	A CONTRACTOR	31.08212
Заведующий кафедрой	Занина Марина Анатольевна	K.	31.08.212
Начальник УМО	Бурлак Наталия Владимировна	Silo	31.08.21

СОДЕРЖАНИЕ

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	3
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ	2
ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	3
3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ	4
4. СТРУКТУРА И СОДЕРЖАНИЕДИСЦИПЛИНЫ	5
5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ,	
ПРИМЕНЯЕМЫЕ ПРИ ОСВОЕНИИ ДИСЦИПЛИНЫ	8
6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ	
РАБОТЫ СТУДЕНТОВ. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО	
КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	
ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ	9
7.ДАННЫЕ ДЛЯ УЧЕТА УСПЕВАЕМОСТИ СТУДЕНТОВ В БАРС	17
8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	
дисциплины	18
9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	20

1. Цель освоения дисциплины

Цель освоения дисциплины — совершенствование компетенций УК-8, ОПК-8 и ПК-1

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательной части учебного плана, входит в Блок 1 «Дисциплины (модули)».

Изучение данной дисциплины опирается на знания, умения, навыки и опыт, полученные при изучении дисциплин «Общая химия», «Неорганическая химия», «Органическая химия», «Общая экология».

Освоение данной дисциплины является необходимым для дальнейшего изучения дисциплин «Биохимия», «Прикладная химия», «Аналитическая химия».

3. Результаты обучения по дисциплине

Код	Код и наименование	D						
и наименование	индикатора (индикаторов)	Результаты						
компетенции	достижения компетенции	обучения						
по дисциплине								
УК-8	3.1_Б.УК-8. Осуществляет	3_3.1_Б.УК-8. Имеет пред-						
Способен создавать и под-	действия по предотвраще-	ставление о системе мер,						
держивать безопасные усло-	нию возникновения чрезвы-	применяемых для предот-						
вия жизнедеятельности, в	чайных ситуаций (природ-	вращения чрезвычайных си-						
том числе при возникнове-	ного и техногенного проис-	туаций.						
нии чрезвычайных ситуаций	хождения) на рабочем месте							
ОПК-8	1.1_Б.ОПК-8 . В профессио-	У_1.2_Б.ОПК-8 . Умеет						
Способен осуществлять пе-	нальной деятельности опи-	проектировать безопасную и						
дагогическую деятельность	рается на научные знания из	здоровьесберегающую, пси-						
на основе специальных	области социальных, гума-	хологически комфортную						
научных знаний.	нитарных, естественных и	образовательную среду на						
	точных наук	основе знания закономерно-						
		стей физического, психиче-						
		ского и социального разви-						
		тия обучающихся, требова-						
		ний санитарных норм и пра-						
		вил, норм безопасности.						
ПК-1	1.1_Б.ПК-1 . Осуществляет	У_1.1_Б.ПК-1 . Умеет ана-						
Способен осуществлять пе-	преподавание уч. дисциплин	лизировать школьные учеб-						
дагогическую деятельность	по профилю в рамках ООП	ники с точки зрения их						
по профильным предметам	общего образования соот-	структуры, содержания, ме-						
(дисциплинам, модулям) в	ветствующего уровня.	тодического аппарата, соот-						
рамках основных образова-		ветствия требованиям						
тельных программ общего		ФГОС общего образования.						
образования, по программам		В_1.2_Б.ПК-1 . Владеет						
дополнительного образова-		навыком решения задач /						
ния детей и взрослых		выполнения практических						
		заданий из школьного курса;						
		обосновывает выбор спосо-						
		ба выполнения задания.						

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

	Раздел дисциплины и темы занятий	Семестр	Неделя семестра		Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			боту	Формы текущего контроля успеваемости	
№ п/п				•	Практиче- ские занятия		ые		(по темам и разделам)	
				Лекции	общая трудоёмкость	Из них – практическая подготовка	Лабораторные работа	KCP	Формы промежуточной аттестации (по семестрам)	
1	2	3	4	5	6	7	8	9	10	
1	Введение	7		1	-	-	-	-		
2	Химическая эволюция геосфер Земли	7		1	-	-	-	2	опрос	
3	Физико-химические процессы в атмосфере	7		2	2	-	6	2	опрос, отчет по ЛР, доклад, тест	
4	Химические процессы в гидросфере	7		2	2	-	6	2	опрос, отчет по ЛР, доклад, тест	
5	Химические процессы в почвенном слое	7		2	2	-	4	2	опрос, отчет по ЛР, доклад, тест	
6	Миграция и трансфор- мация примесей в био- сфере	7		2	4	-	-	4	опрос, доклад	
7	Действие химических факторов на организм	7		2	2	-	2	4	опрос, отчет по ЛР, тест	
8	Защита биосферы от химического загрязнения	7		2	2	-	1	4	опрос	
9	Методы анализа объек- тов окружающей среды	7		2	2	-	-	2	опрос	
	Всего			16	16	-	18	22		
	Промежуточная атте- стация								Зачет в 7 семестре	
	Общая трудоемкость дисциплины		2 з.е., 72 часов							

Содержание дисциплины

1. Введение

Предмет химии окружающей среды. Связь с другими дисциплинами. Особенности химических превращений в природных системах.

2. Химическая эволюция геосфер Земли

Геохимическая история планеты. Геосферы и земные оболочки. Основные источники энергии на Земле: эндогенные и экзогенные процессы. Распространенность химических элементов в окружающей среде. Биохимическая эволюция атмосферы и гидросферы. Роль живых организмов в формировании биосферы.

3. Физико-химические процессы в атмосфере

Строение и состав атмосферы. Температурный профиль атмосферы. Устойчивость атмосферы. Фотохимические процессы в верхних слоях земной атмосферы. Фотохимические процессы в стратосфере. Озон. Нулевой цикл. Озоновый слой, его функции в биосфере. Влияние оксидов азота и галогенсодержащих органических соединений на нулевой цикл озона. Физико-химические процессы в тропосфере. Свободные радикалы в тропосфере. Фотохимическое окисление метана. Реакции гомологов метана. Алкены. Реакции озонирования. Бензол и его гомологи. Альдегиды и кетоны. Превращения с участием оксидов азота. Аммиак. Оксиды азота. Фотохимический смог. Атмосферный цикл соединений азота. Соединения серы в атмосфере. Сероводород. Диоксид серы. Окисление соединений серы. Парниковые газы в атмосфере. Вода в атмосфере

4. Химические процессы в гидросфере

Гидрологический цикл. Основные виды природных вод и особенности их состава. Аномальные свойства воды и, их роль в природе. Особенности воды как растворителя. Карбонатная система и концентрация ионов водорода в воде. Угольная кислота и рН раствора. Растворимость карбонатных пород. Кальцит. Доломит. Высокомагнезиальный кальцит. Влияние примесей на растворимость кальцита. Равновесная растворимость силикатных пород. Окислительно-восстановительные процессы в гидросфере. Температурный профиль пресноводных водоемов. Олиготрофные и эвтрофные водоемы. Процессы комплексообразования в гидросфере. Природные и синтетические комплексообразователи. Поверхностно-активные вещества в водоемах. Океан. Эстуарии. Температурный профиль, состав и свойства океанических вод. Процессы удаления основных растворенных веществ. Особенности окислительно-восстановительных процессов в океане.

5. Химические процессы в почвенном слое

Строение литосферы. Структура земной коры. Почва. Образование почвенного слоя. Элементный и фазовый состав почв. Гумус. Состав и свойства гумусовых веществ. Влагоемкость и водопроницаемость почв. Почвенные растворы. Почвенный поглощающий комплекс. Катионнообменная способность почв. Селективность катионного обмена. Кислые почвы. Виды почвенной кислотности. Формы соединений алюминия в почвах. Соединения кремния и алюмосиликаты. Азот, фосфор и сера в почвенных процессах. Марганец и железо в почвах. Микроэлементы и химическое загрязнение почв.

6. Миграция и трансформация примесей в биосфере

Виды миграции. Воздушная, водная, биогенная и техногенная миграция. Факторы миграции. Классификация мигрирующих элементов. Геохимические барьеры. Физико-химические, механические, биогеохимические и техногенные барьеры. Миграция и аккумуляция соединений кремния, алюминия. фосфора, тяжелых металлов и радиоактивных элементов в биосфере. Процессы самоочищения водоемов. Гидролиз солей тяжелых металлов. Окисление органических веществ в аэробных условиях. Трансформация нефти и пестицидов в окружающей среде. Кислотные дожди. Кислотообразующие вещества в атмосфере. Закисление осадков. Трансграничный перенос кислотных осадков. Динамика изменения рН и химического состава осадков. Процессы адсорбции оксидов серы и азота

подстилающей поверхностью. Закисление озер. Закисление почв. Подвижность элементов и кислотность почв.

7. Действие химических факторов на организм

Хемомедиаторы и их классификация. Общие закономерности действия поллютантов на живые организмы. Виды токсического действия поллютантов. Токсичность загрязняющих веществ, основные критерии оценки токсичности. Виды экологических нормативов. Классы опасности химических веществ. Поллютанты в быту.

8. Защита биосферы от химического загрязнения

Основные химические загрязнители биосферы. Источники загрязнения. Санитарнозащитные зоны. Методы очистки атмосферных выбросов. Системы очистки сточных вод. Утилизация и складирование твёрдых отходов. Методы вторичного использования отходов.

9. Методы анализа объектов окружающей среды

Правила отбора проб атмосферного воздуха. Правила отбора проб воды из открытых водоёмов. Правила отбора проб почвы. Водная, солевая и кислотная вытяжки из почвы. Правила подготовки растительных образцов к анализу. Качественный анализ природных объектов. Химические методы анализа объектов окружающей среды. Физикохимические методы анализа и их использование для изучения объектов окружающей среды.

5. Образовательные технологии, применяемые при освоении дисциплины

Основные образовательные технологии, применяемые при изучении дисциплины

- Технология развития критического мышления.
- Технология контекстного обучения обучение в контексте профессии (реализуется в учебных заданиях, учитывающих специфику направления и профиля подготовки).
- Технология проектной деятельности (реализуется при подготовке студентами проектных работ любого рода).
- Технология интерактивного обучения (реализуется в форме учебных заданий, предполагающих взаимодействие обучающихся, использование активных форм обратной связи).
- Технология электронного обучения (реализуется при помощи электронной образовательной среды СГУ при использовании ресурсов ЭБС, при проведении автоматизированного тестирования и т. д.).

Адаптивные образовательные технологии, применяемые при изучении дисциплины

При обучении лиц с ограниченными возможностями здоровья предполагается использование при организации образовательной деятельности адаптивных образовательных технологий в соответствии с условиями, изложенными в ОПОП (раздел «Особенности организации образовательного процесса по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья»), в частности: предоставление специальных учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего обучающимся необходимую техническую помощь, и т. п. – в соответствии с индивидуальными особенностями обучающихся.

При наличии среди обучающихся лиц с ограниченными возможностями здоровья в раздел «Образовательные технологии, применяемые при освоении дисциплины» рабочей программы вносятся необходимые уточнения в соответствии с «Положением об организации образовательного процесса, психолого-педагогического сопровождения, социализации инвалидов и лиц с ограниченными возможностями здоровья, обучающихся в БИ СГУ» (П 8.70.02.05–2016).

Информационные технологии, применяемые при изучении дисциплины

- Использование информационных ресурсов, доступных в информационнотелекоммуникационной сети Интернет (см. перечень ресурсов в п. 8 настоящей программы).
- Составление и редактирование текстов при помощи текстовых редакторов.
- Представление информации с использованием средств инфографики.
- Создание электронных документов (компьютерных презентаций, видеофайлов, плейкастов и т. п.).
- Проверка файла работы на заимствования с помощью ресурса «Антиплагиат».

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

6.1. Самостоятельная работа студентов по дисциплине

6.1.1. Подготовка к практическим занятиям Тематика практических занятий

- 1. Химический состав литосферы.
- 2. Химический состав гидросферы.
- 3. Химический состав атмосферы и живого вещества.
- 4. Основные экологические проблемы атмосферы.
- 5. Химические показатели почв.
- 6. Химическое загрязнение почв.
- 7. Биохимические процессы в водоёмах. Эвтрофикация.
- 8. Распространение загрязняющих веществ в окружающей среде.
- 9. Биогеохимические барьеры.
- 10. Круговороты углерода, азота и фосфора.
- 11. Круговороты серы и галогенов.
- 12. Круговороты металлов.
- 13. Критерии оценки токсичности загрязняющих веществ
- 14. Классы опасности химических веществ.
- 15. Опасные химические вещества в быту.
- 16. Воздействие на окружающую среду промышленности.
- 17. Воздействие на окружающую среду сельского и коммунального хозяйства.
- 18. Воздействие на окружающую среду энергетики и транспорта.
- 19. Показатели качества водных объектов.
- 20. Методы анализа проб атмосферного воздуха.
- 21. Методы анализа почв.

Примерный план практического занятия № 4

Тема. Основные экологические проблемы атмосферы.

- 1. Смог. Типы смогов.
- 2. Радиоактивное загрязнение атмосферы.
- 3. Озоновый защитный слой. Механизмы разрушения озона.
- 4. «Парниковый эффект».

Методические рекомендации. При подготовке к практическим занятиям нужно изучить определенные разделы курса по учебникам и конспектам лекций. На практических занятиях проводится опрос по соответствующей теме, проверяются домашние задания. Студенты работают у доски и выполняют задания самостоятельно. Студенты выступают с докладами, которые сопровождаются презентациями, отвечают на вопросы по теме докладов, принимают участие в дискуссиях.

Критерии оценивания: за каждое практическое занятие студент может получить от 0 до 1 балла.

6.1.2. Подготовка к лабораторным занятиям Тематика лабораторных занятий

- 1. Кислотные дожди
- 2. Экологический мониторинг воздуха. Определение загрязненности воздуха с помощью лишайников (метод лихеноиндикации)

- 3. Роль транспорта в загрязнении атмосферы
- 4. Методы очистки воды.
- 5. Экологический мониторинг анализ воды: органолептические методы определения запаха воды; определение рН воды при помощи индикаторов.
- 6. Экспресс методы оценки химического состава воды (определение содержания в воде ионов железа, сульфат ионов, хлорид ионов)
 - 7. Микробиологический анализ воды

Методические рекомендации. Перед выполнением каждой лабораторной работы нужно изучить определенные разделы курса по учебникам и конспектам лекций.

Лабораторная работа включает несколько этапов. 1. Написание конспекта, в котором необходимо оставить место для выполнения заданий, содержащихся в тексте работы. 2. Выполнение опытов. 3. Составление отчета по лабораторной работе. На этом этапе необходимо выполнить все задания (написать уравнения реакций, провести необходимые рас- четы, построить графики, заполнить таблицы и т. д.).

Критерии оценивания: за выполнение каждой лабораторной работы студент может получить от 0 до 1 балла.

6.1.3. Доклад Темы докладов

- 1. Природные и антропогенные факторы, определяющие поверхностных вод суши.
- 2. Круговорот биогенных элементов в водных экосистемах и последствия его нарушения.
 - 3. Химический круговорот компонентов вод Мирового океана.
 - 4. Химические превращения органических веществ в атмосфере.
 - 5. Загрязнение окружающей среды и проблема изменения климата.
 - 6. Проблемы нарушения кислотно-основного баланса в окружающей среде.
- 7. Химическая трансформация компонентов нефтяного загрязнения в окружающей среде.
- 8. Озоноразрушающие вещества, их источники и химическое поведение в атмосфере.
 - 9. Влияние продуктов органического синтеза на качество окружающей среды.
 - 10. Источники химического загрязнения окружающей среды.
 - 11. Мониторинг химического загрязнения окружающей среды.
- 12. Применение химических и физико-химических методов состояния объектов окружающей среды.
 - 13 Особенности миграции загрязняющих веществ в различных средах.
 - 14 Химические факторы почвенного плодородия и проблема деградации почв.
 - 15 Гумусовые кислоты, их состав и свойства.
 - 16 Биогенные элементы в почвенных процессах.
 - 17 Окислительно-восстановительные процессы в почвах.
 - 18 Тяжелые металлы в природных водах.

Методические рекомендации: подготовка докладов ведèтся с использованием текста лекции по соответствующей теме, учебников и учебных пособий, научно- популярной и методической литературы, периодических изданий. Презентация — это средство визуализации представленного в докладе материла. Она должна соответствовать порядку изложения, иллюстрировать основные тезисы доклада, содержать качественные графические (диаграммы, гистограммы, графики) и фотоматериалы, цифровые данные удобно представлять также в табличной форме. Подготовка презентации предполагает следующие пошаговые действия:

- 1. Разработка структуры презентации.
- 2. Создание презентации в PowerPoint.
- 3. Репетиция доклада с использованием презентации.

Структура презентации должна соответствовать структуре доклада:

- 1. Титульный слайд, должен содержать тему доклада и фамилию, имя и отчество докладчика (1 слайд).
 - 2. Основные положения.
 - 3. Финальный слайд (1 слайд).

Рекомендуемое общее количество слайдов -10-20.

Объем доклада и сопровождающей его презентации выбирается с учетом требований регламента.

Критерии оценивания:

- соответствие содержания материала выбранной теме оценивается от 0 до 5 баллов;
 - выступление, качество презентации оценивается от 0 до 10 баллов.

6.1.4. Тест по материалу дисциплины Примеры тестовых заданий:

(раздел «Химические процессы в почвенном слое»)

Bonpoc 1

Для типичных почв характерно соотношение объемов твердой, жидкой и газообразной фаз:

- 1.2:1:1
- 2. 1:1:1
- 3. 1:2:2
- 4. 1:1:2

Bonpoc 2

К типичным компонентам почвенных растворов, концентрации которых значительно превосходят концентрации других ионов, относятся катионы:

- 1. Ca2+, Mg2+, K+, NH4+,Na+
- 2. Al3+, Cu2+, K+, NH4+,Na+
- 3. Ca2+, Mg2+, K+,Fe3+, Zn2+
- 4. Ca2+, Ba2+, K+, Al3+,Na+

Bonpoc 3

Кислотность почв может быть снижена внесением в почву:

- 1.известняка
- 2.гипса
- 3. калийной селитры
- 4.всех перечисленных веществ

Bonpoc 4

Гидролитическая кислотность почв - это кислотность:

- 1. обусловленная взаимодействием почвы с уксуснокислым натрием
- 2. проявляющаяся при обработке почвы раствором нейтральной соли
- 3. обусловленная поглощенными ионами алюминия и водорода
- 4. обусловленная ионами водорода в почвенном растворе

Bonpoc 5

Насыщенность почвы основаниями определяется содержанием в почвенном поглощающем комплексе:

- 1. катионов кальция и магния
- 2. катионов натрия и калия
- 3. катионов алюминия и водорода
- 4. всех почвенных катионов

Bonpoc 6

Подвижность катионогенных элементов в почвах:

1. возрастает при увеличении кислотности

2.не зависит от кислотности

3. увеличивается при уменьшении кислотности

4.максимальна в нейтральной среде

Bonpoc 7

Почвенный воздух обогощен по составу:

5.оксидом углерода (II)

6.оксидом азота (II)

7. оксидом углерода (IV)

8.кислородом

Bonpoc 8

Значение актуальной щелочности почв обусловлено наличием в почвенном растворе:

1.NaOH, KOH

2. Na2CO3, NaHCO3, Ca(HCO3)2

3. растворимых соединений алюминия

4. растворимых соединений железа

Bonpoc 9

Подвижность катионогенных элементов в почвах:

5. возрастает при увеличении кислотности

6.не зависит от кислотности

7. увеличивается при уменьшении кислотности

8.максимальна в нейтральной среде

Bonpoc 10

Емкость щелочного барьера в почвах определяется:

1.количеством карбонатов

2.количеством обменных катионов

3.содержанием органического вещества

4. значением окислительно-восстановительного потенциала.

Критерии оценки тестовых заданий:

- «отлично» выставляется студенту, если правильные ответы составили не менее 90%;
- «хорошо» выставляется студенту, если правильные ответы составили не менее 75%;
- «удовлетворительно» выставляется студенту, если правильные ответы составили не менее 51%;
- «неудовлетворительно» выставляется студенту, если правильные ответы составили менее 50%.

6.2. Оценочные средства для текущего контроля успеваемости по дисциплине

В соответствии с принятой в СГУ имени Н. Г. Чернышевского балльнорейтинговой системой учета достижений студента (БАРС) баллы, полученные в ходе текущего контроля, распределяются по пяти группам:

- лекции;
- практические занятия;
- лабораторные занятия
- самостоятельная работа;
- другие виды учебной деятельности.
- 1. Посещение **лекций** и участие в формах экспресс-контроля от 0 до 16 баллов (по 1 балла за лекцию).
- 2. Посещение практических занятий, выполнение программы занятий от 0 до 16 баллов (по 1 баллу за выполнение программы занятия).

Планы практических занятий см. в разделе 6.1.1.

3. Посещение лабораторных занятий, выполнение программы занятий – от 0 до 18 баллов (по 1 баллу за выполнение программы занятия).

Планы лабораторных занятий см. в разделе 6.1.2.

- 3. Самостоятельная работа:
- подготовка докладов до 10 баллов (Тематику рефератов, требования к ним и рекомендации по выполнениюсм. в разделе 6.1.3);
 - 4. Другие виды учебной деятельности:
 - Выполнение тестов от 0 до 10 баллов

(Методические рекомендации по подготовке см. в разделе 6.1.4).

6.3. Оценочные средства для промежуточной аттестации по дисциплине

Перечень вопросов к зачету

- 1. Предмет и задачи химии окружающей среды.
- 2. Образование земной коры и атмосферы.
- 3. Химический состав литосферы.
- 4. Химический состав гидросферы.
- 5. Химический состав атмосферы.
- 6. Химический состав биосферы.
- 7. Геохимические, биологические и антропогенные источники микрокомпонентных примесей в атмосфере.
- 8. Смоги. Озоновый защитный слой. Механизмы разрушения озона. «Парниковый эффект».
- 9. Радиоактивное загрязнение биосферы.
- 10. Почвы. Химический состав, свойства, загрязнение.
- 11. Общие для большинства почв реакции. Катионный обмен. Потенциальная кислотность почв. Щелочность почв.
- 12. Биологические процессы в гидросфере.
- 13. Питательные вещества и эвтрофикация водоёмов.
- 14. Физико-химическая, биогенная и техногенная миграция элементов.

- 15. Особенности распространения, трансформации и накопления загрязняющих веществ в окружающей среде.
- 16. Перенос веществ природных и природно-антропогенных ландшафтов в направлении «почва-воздух».
- 17. Перенос веществ природных и природно-антропогенных ландшафтов в направлении «вода-воздух».
- 18. Перенос веществ природных и природно-антропогенных ландшафтов в направлении «почва-вода».
- 19. Поступление и накопление различных веществ в живых организмах.
- 20. Геохимические барьеры.
- 21. Круговороты элементов в природных и природно-антропогенных ландшафтов
- 22. Круговороты макроэлементов: углерода, азота, фосфора, серы.
- 23. Виды воздействия поллютантов на живые организмы.
- 24. Критерии оценки токсичности и классы опасности загрязняющих веществ.
- 25. Поллютанты в быту.
- 26. Химическое загрязнение, охрана и рекультивация почв.
- 27. Методы очистки атмосферных выбросов.
- 28. Системы очистки сточных вод.
- 29. Утилизация и складирование твёрдых отходов. Методы вторичного использования отходов.
- 30. Правила отбора проб атмосферного воздуха.
- 31. Правила отбора проб воды из открытых водоёмов.
- 32. Правила отбора проб почвы.
- 33. Химические методы анализа и их использование в анализе объектов окружающей среды.
- 34. Физико-химические методы анализа и их использование в анализе объектов окружающей среды.

Практические задания к зачету

- 1. Промышленным предприятием выбрасывается ежегодно в атмосферу 5 тыс. т пыли, при этом в первой зоне загрязняется 15 га сельскохозяйственных и лесных угодий. Средняя высота выброса составляет 50 м. Определите ущерб, причинённый сельскому и лесному хозяйствам.
- 2. Промышленным предприятием выбрасывается ежегодно в атмосферу 15 тыс. т СО. При этом в первой зоне проживает одна тысяча жителей; во второй 2000 человек. Высота выброса составляет 90 м. Определите ущерб, причинённый здравоохранению.
- 3. Промышленным предприятием выбрасывается ежегодно в атмосферу 4,5 тыс. т SO2, при этом в первой зоне загрязняется 15 га, во второй зоне загрязняется 500 га сельскохозяйственных и лесных угодий. Средняя высота выброса составляет 50 м. Определите ущерб, причинённый сельскому и лесному хозяйствам.
- 4. Промышленное предприятие выбрасывает ежегодно в атмосферу 13 тыс. т пыли. В первой зоне проживает 500; во второй одна тысяча; в третьей 28 тыс. и в четвёртой 45 тыс. человек. Средняя высота выброса 60 м. Определите ущерб, причиняемый пылью коммунальному хозяйству.
- 5. Промышленное предприятие выбрасывает ежегодно в атмосферу 30 тыс. т SO2. В первой зоне проживает 500; во второй одна тысяча; в третьей 28 тыс. и в четвёртой 45 тыс. человек. Средняя высота выброса 60 м. Определите ущерб, причиняемый SO2 коммунальному хозяйству.
- 6. Промышленное предприятие выбрасывает ежегодно в атмосферу 5 тыс. т пыли и 4,5 тыс. т сернистого ангидрида. В первой зоне загрязняется 15 га сельскохозяйственных и лесных угодий; во второй 500 га. Средняя высота выброса составляет 50 м. Определите ущерб, причинённый сельскому и лесному хозяйству.

- 7. Промышленное предприятие выбрасывает ежегодно 56 тыс. т пыли, 21 тыс. т сернистого ангидрида. Средняя высота выброса составляет 105 м. Во второй зоне загрязняется 200 га сельскохозяйственных и лесных угодий, в третьей 1100 га, в четвёртой 2000 га. Определите ущерб от загрязнения лесному и сельскому хозяйству.
- 8. Промышленное предприятие выбрасывает ежегодно в атмосферу 13 тыс. т пыли и 30 тыс. т сернистого ангидрида. В I зоне проживает 500 тыс., во II -1 тыс., в III -28 тыс. и в IV -45 тыс. человек. Средняя высота выброса -60 м. Определите ущерб, причинённый коммунальному хозяйству.
- 9. Промышленное предприятие выбрасывает ежегодно в атмосферу 15 тыс. т пыли, 2,3 тыс. т сернистого ангидрида и 15 тыс. т оксида углерода (II). В первой зоне проживает 1 тыс.; во второй 2 тыс. человек. Высота выброса составляет 120 м. Определить локальный ущерб, причинённый здравоохранению.
- 10. Промышленная котельная имеет одну дымовую трубу высотой h=35 м и диаметром устья D=1,4 м. Из трубы выбрасывается газовоздушная смесь со скоростью W0=7 м/с. Масса экотоксиканта при отсутствии очистки равна M=2,6 г/с. Температура газообразной смеси 125 °C, а окружающего воздуха 25 °C; F=3; A=200; $\eta=1$ Вычислите максимальное значение приземной концентрации экотоксиканта.
- 11. Промышленная котельная имеет одну дымовую трубу высотой h=35 м и диаметром устья D=1,4 м. Из трубы выбрасывается газовоздушная смесь со скоростью W0=7 м/с. Масса экотоксиканта при отсутствии очистки равна M=2,6 г/с. Температура газовоздушной смеси 125 °C, а окружающего воздуха 25 °C; F=3; A=200; $\eta=1$ Вычислите расстояние Xmax от источника выброса, на котором приземная концентрация загрязнителя при неблагоприятных метеорологических условиях будет достигать максимального значения.
- 12. Промышленная котельная имеет одну дымовую трубу высотой h=35 м и диаметром устья D=1,4 м. Из трубы выбрасывается газовоздушная смесь со скоростью W0=7 м/с. Масса экотоксиканта при отсутствии очистки равна M=2,6 г/с. Температура газовоздушной смеси 125 °C, окружающего воздуха 25 °C; F=3; A=200; $\eta=1$ Вычислите опасную скорость ветра Wmax.
- 13. Котовская ТЭЦ ежегодно выбрасывает в атмосферу 280,7 т сернистого ангидрида. Средняя высота выброса 80 м. В первой зоне проживает 500 тыс., во второй 2000 человек. Определите ущерб, причинённый здравоохранению.
- 14. Предприятие Тамбовской области ежегодно выбрасывает в атмосферу 8,9 т SO2 и 7,5 т CO. Средняя высота выброса 120 м. В первой зоне проживает 500, во второй 2000 человек. Определите ущерб, причинённый здравоохранению.
- 15. Из трубы высотой 25 м и диаметром 1,5 м выбрасывается газовоздушная смесь со скоростью 6 м/с. Масса выбрасываемого загрязнителя при отсутствии очистки равна 2,0 г/с. Температура газовоздушной смеси 85 °C, температура окружающего воздуха 25 °C; F = 3; A = 200; $\eta = 1$ Вычислите опасную скорость ветра.
- 16. Из одиночного точечного источника с круглым устьем со средней скоростью 9 м/с выходит газовоздушная смесь. Высота источника 10 м, диаметр 1,5 м. Масса выбрасываемого экотоксиканта при очистке 80% составляет 0,75 г/с; F = 2,5; A = 200; $\Delta T = 50$ °C. Определите опасную скорость ветра.
- 17. С участка утилизации отработанных ртутных ламп вентиляционный воздух загрязняется парами ртути. При утилизации одной лампы в воздух поступает 0,5 мг ртути. За 5 часов утилизируют в среднем 150 ламп. Определите массу ртути, которая поступает в воздух в течение года при 260 рабочих днях.

Методические рекомендации. Зачет проводится в форме ответа на вопросы. Для подготовки ответа студентам предоставляется 30 минут. В каждом билете имеется два вопроса и практическое задание, полнота ответа на каждый оценивается в 10 баллов.

Критерии оценивания ответа на вопросы билеты:

- 0 баллов ученик полностью не усвоил учебный материал. Ответ на вопрос отсутствует;
- 1-8 балла ученик почти не усвоил учебный материал. Ответ фрагментарный, односложный; аргументация отсутствует либо ошибочны ее основные положения; большинство важных фактов отсутствует, выводы не делаются; неправильно отвечает на наводящие вопросы;
- 9-17 балла ученик не усвоил существенную часть учебного материала; ответ частично правильный, неполный; логика ответа нарушена, аргументация в большей части ошибочна; ученик знает основные законы и понятия, но оперирует ими слабо; отвечает односложно на поставленные вопросы с помощью преподавателя;
- 18-25 баллов ученик в основном усвоил учебный материал; ответ полный и правильный; изложен в определенной логической последовательности; ученик умеет оперировать основными законами и понятиями; делает обоснованные выводы; последовательно отвечает на поставленные вопросы. Допускаются одна-две несущественные ошибки, которые исправляются по требованию преподавателя.
- 26-30 баллов ученик полностью усвоил учебный материал; ответ полный и правильный; изложен в определенной логической последовательности; свободно оперирует биологическими законами и понятиями; подходит к материалу с собственной точкой зрения; делает творчески обоснованные выводы; последовательно и исчерпывающе отвечает на поставленные вопросы. Допускается одна-две несущественные ошибки, которые ученик самостоятельно исправляет в ходе ответа.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1. Таблица максимальных баллов по видам учебной деятельности

1	2	3	4	5	6	7	8
Лек- ции	Лаборатор- ные занятия	Практиче- ские занятия	Самостоятель- ная работа	Автоматизирован- ное тестирование	Другие виды учебной деятельно- сти	Промежуточ- ная аттеста- ция	Итого
16	18	16	10	0	10	30	100

Программа оценивания учебной деятельности студента 7 семестр

Лекшии

Посещаемость, активность – от 0 до 16 баллов за семестр (от 0 до 1 балла за занятие).

Лабораторные занятия

Уровень подготовки к занятиям, активность работы в аудитории, самостоятельность при выполнении работы, правильность выполнения заданий и т.д. – от 0 до 18 баллов за семестр.

Практические занятия

Уровень подготовки к занятиям, активность работы в аудитории, самостоятельность при выполнении работы, правильность выполнения заданий и т.д. – от 0 до 16 баллов за семестр.

Самостоятельная работа.

Доклад с презентацией – от 0 до 10 баллов за семестр.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Выполнение тестовых заданий – от 0 до 10 баллов за семестр

Промежуточная аттестация. Зачет

при проведении промежуточной аттестации ответ на «отлично» оценивается от 26 до 30 баллов; ответ на «хорошо» оценивается от 18 до 25 баллов; ответ на «удовлетворительно» оценивается от 9 до 17 баллов; ответ на «неудовлетворительно» оценивается от 0 до 8 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 7 семестр по дисциплине «Химия окружающей среды» составляет 100 баллов.

Таблица 2. Пересчет полученной студентом суммы баллов в оценку (зачет)

 	-y y (y (y (y (y (y (y (y (y (
51 балл и более	«зачтено»
50 баллов и менее	«не зачтено»

8. Учебно-методическое и информационное обеспечение дисциплины

а) литература

- 1. Геохимия окружающей среды: учебное пособие / составитель О. А. Поспелова. Ставрополь: Изд-во СтГаУ, 2014. 60 с. URL: https://znanium.com/catalog/document?id=28584 (дата обращения: 12.05.2021)
- 2. Майстренко, В. Н. Эколого-аналитический мониторинг стойких органических загрязнителей: учебное пособие для студентов вузов, обучающихся по специальности 011000 «Химия» / В. Н. Майстренко, Н. А. Клюев. –Москва: БИНОМ. Лаборатория знаний, 2015. 323 с.— URL: https://ibooks.ru/reading?collection_id=&paging=&year=0&date=&search_id=PCMNB7PAP3D18C6TPI4(дата обращения: 12.05.2021).
- 3. Химия окружающей среды: методические указания к курсу для студентов направления подготовки 022000 "Экология и природопользование" / составители: В. Н. Решетникова, А. А. Овчаренко.— Балашов, 2014. 19 с. URL: http://elibrary.sgu.ru/uch_lit/833.pdf(дата обращения: 12.05.2021).

Zon	библиотекой	OSI	(Гаманенко	о.п.о	
лав.	оиолиотекои		(I amanenko	O.11.7	

б) программное обеспечение и Интернет-ресурсы

Программное обеспечение

- 1. Средства MicrosoftOffice
- MicrosoftOfficeWord текстовый редактор;
- MicrosoftOfficeExcel табличный редактор;
- MicrosoftOfficePowerPoint программа подготовки презентаций.
- 2. ИРБИС система автоматизации библиотек.

Интернет-ресурсы

Единая коллекция цифровых образовательных ресурсов [Электронный ресурс]. – URL: http://scool-collection.edu.ru

Единое окно доступа к образовательным ресурсам [Электронный ресурс]. – URL: http://window.edu.ru

Издательство «**Лань**» [Электронный ресурс]: электронно-библиотечная система. – URL: http://e.lanbook.com/

Издательство «Юрайт» [Электронный ресурс]: электронно-библиотечная система. – URL: http://biblio-online.ru

Кругосвет [Электронный ресурс]: Универсальная научно-популярная онлайнэнциклопедия. – URL: http://www.krugosvet.ru

Руконт [Электронный ресурс]: межотраслевая электронная библиотека. — URL: http://rucont.ru

eLIBRARY.RU [Электронный ресурс]: научная электронная библиотека. — URL: http://www.elibrary.ru

ibooks.ru[Электронный ресурс]: электронно-библиотечная система. – URL: http://ibooks.ru

Znanium.com[Электронный ресурс]: электронно-библиотечная система. — URL: http://znanium.com

9. Материально-техническое обеспечение дисциплины

- Учебные аудитории, оборудованные комплектом мебели, доской.
- Комплект проекционного мультимедийного оборудования.
- Кабинет химии с вытяжными шкафами, химической посудой и другим лабораторным оборудованием, приборами, наборами реактивов.
- Компьютерный класс с доступом к сети Интернет.
- Библиотека с информационными ресурсами на бумажных и электронных носителях.
- Оборудование для аудио- и видеозаписи.
- Офисная оргтехника.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)».

Автор – Занина М. А.

Программа одобрена на заседании кафедры биологии и экологии. Протокол № 1 от 31 августа 2021 года.