МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ имени Н.Г. Чернышевского»

Механико-математический факультет

СОГЛАСОВАНО

заведующий кафедрой геометрии

_ Галаев С.В.

1" Wolled 2023 r.

УТВЕРЖДАЮ

председатель НМК механико-

математического факультета Тышкевич С.В.

1" cerous

2023 г.

Фонд оценочных средств

текущего контроля и промежуточной аттестации по учебной практике Практика по получению базовых навыков. Часть 2

Направление подготовки бакалавриата 01.03.03 Механика и математическое моделирование

Профиль подготовки бакалавриата Механика деформируемых тел и сред

Квалификация (степень) выпускника Бакалавр

Форма обучения очная

Саратов, 2023 Карта компетенций

V O LUTTO HILIDAYO II LO	Миникатари наступкация	,	Вили вологий и
Контролируемые	Индикаторы достижения	Планируемые	Виды заданий и
компетенции	компетенций	результаты обучения	оценочных
(шифр		(знает, умеет,	средств
компетенции)		владеет, имеет	
ОПК-1. Способен	1.1 Б.ОПК-1.	навык) Знать:	2
использовать	Демонстрирует знание	- основные понятия,	Задания для лабораторных
фундаментальные	основных понятий,	теоремы	занятий.
знания,	гипотез, теорем, методов	аналитической	Задания для
полученные в	фундаментальной и	геометрии.	самостоятельной
области	прикладной математики,	Уметь:	работы.
математических и	механики, биомеханики и	-доказывать	1
естественных	других естественных наук.	основные теоремы	
наук, в		аналитической	
профессиональной		геометрии на	
деятельности.		плоскости и в	
		пространстве;	
		Владеть:	
		- понятийным и	
		формальным	
		математическим	
		аппаратом аналитической	
		геометрии.	
	2.1 Б.ОПК-1.	Знать:	
	Осуществляет первичный	- основные понятия	
	сбор и анализ данных в	аналитической	
	области фундаментальной	геометрии и их	
	и прикладной математики,	применение в	
	механики, биомеханики и	профессиональной	
	других естественных наук.	деятельности.	
		Уметь:	
		- применять	
		аналитическую геометрию в	
		решении задач	
		профессиональной	
		деятельности.	
		Владеть:	
		- навыками	
		применения	
		аналитической	
		геометрии в	
		профессиональной	
	2.1 FOHE 1	деятельности.	
	3.1_Б.ОПК-1. Корректно	Знать:	
	интерпретирует различные	- методы решения задач	
	данные в области	профессиональной	
	фундаментальной и	деятельности на	
	прикладной математики,	основе	
	<u> </u>	2311020	<u> </u>

механики, биомеханики и	аналитической	
	геометрии.	
других естественных наук.	Уметь:	
	- применять методы	
	аналитической	
	геометрии в решении	
	задач	
	профессиональной	
	деятельности.	
	Владеть:	
	-навыками	
	применения	
	аналитической	
	геометрии в решении	
	задач	
	профессиональной	
	деятельности.	
4.1_Б.ОПК-1. Обладает	Знать:	
навыками анализа	- основные	
	логические схемы	
математических задач	геометрических	
и/или естественнонаучных	теорем;	
фактов/явлений.	- основные методы	
	геометрических	
	доказательств.	
	Уметь:	
	- использовать	
	современные методы сбора, анализа и	
	± ·	
	обработки научной	
	информации,	
	- изложить научные	
	знания по	
	аналитической	
	геометрии.	
	Владеть:	
	- навыками сбора,	
	обработки, анализа и	
	систематизации	
	информации по теме	
	исследования,	
	способностью	
	публично	
	представлять	
	научные результаты.	
5.1_Б.ОПК-1. Применяет	Знать:	
фундаментальные знания,	- методы решения	
полученные в области	задач	
математических и	профессиональной	
естественных наук, при	деятельности на	
решении задач в области	основе	
избранных видов	аналитической	

	проформоном чей	FOOMOTPHIA	
	профессиональной	геометрии.	
	деятельности.	Уметь:	
		- применять	
		геометрические	
		методы в решении	
		задач	
		профессиональной	
		деятельности.	
		Владеть:	
		- навыками	
		применения знания,	
		полученные в	
		области геометрии,	
		при решении задач в	
		области избранных	
		видов	
		профессиональной	
		деятельности.	
	6.1_Б.ОПК-1. Имеет опыт	Знать:	
	теоретического	– основные методы и	
	исследования объектов	способы сбора,	
	профессиональной	обработки, анализа и	
	деятельности с помощью	обобщения	
	методов фундаментальной	информации.	
	и прикладной математики,	Уметь:	
	механики, биомеханики и	- формулировать	
	других естественных наук.	определения	
		геометрических	
		понятий и теорем на	
		математическом	
		языке;	
		- использовать	
		аппарат	
		аналитической	
		геометрии в научно-	
		исследовательской	
		деятельности.	
		Владеть:	
		- навыками	
		самостоятельных	
		исследований в	
		области	
		аналитической	
ПК-2. Способен к	1.1 Б.ПК-2. Знает	геометрии. Знать:	Тест. Опрос.
			reer. Onpoe.
проведению	основные методы решения	- постановку и	
расчетов	задач прикладных теорий	методы решения	
поведения	стержней, пластин и	основных задач	
элементов	оболочек, а также основы	элементарной	
конструкций при	теории метода конечных	геометрии.	
силовом и	элементов. 2.1 Б.ПК-2. Способен	Уметь:	
температурном	2.1_Б.ПК-2. Способен	- использовать	

воздействиях с	получить и реализовать	аппарат векторной	
использованием	решение задачи о	алгебры для решения	
прикладных	деформировании элемента	геометрических	
приближенных	конструкции под	задач;	
теорий и метода	действием заданной	- применять	
конечных	нагрузки в случаях, когда	основные формулы	
элементов	задача допускает	элементарной	
	аналитическое решение.	геометрии при	
	3.1_Б.ПК-2. Способен	решении	
	построить и реализовать	практических задач.	
	конечно-элементную	Владеть:	
	расчетную схему с	- навыками	
	применением современных	самостоятельных	
	программных комплексов.	исследований в	
	4.1_Б.ПК-2. Способен	области	
	подобрать и обосновать	элементарной	
	разбиение конструкции на	геометрии.	
	конечные	-	
	элементы,		
	проанализировать влияние		
	размеров сетки на		
	точность расчетов.		
	5.1 Б.ПК-2. Может		
	провести верификацию		
	полученных результатов и		
	самостоятельно		
	сформулировать выводы		
	на основе анализа		
	проведенных расчетов.		
	продеденным рас тетов.		

Показатели оценивания планируемых результатов обучения

Семестр		Шкала оце	нивания	
	2 (незачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)
1	Знает	Знает	Знает	Знает
семестр	фрагментарно	основные методы	постановку и	основные понятия,
	основные понятия,	и способы сбора,	методы	теоремы
	теоремы	обработки,	решения	элементарной
	элементарной	анализа и	основных задач	геометрии,
	геометрии.	обобщения	элементарной	основные методы
	Слабо умеет	информации.	геометрии.	и способы сбора,
	доказывать	Умеет	Умеет	обработки,
	основные теоремы	формулировать	использовать	анализа и
	элементарной и	определения	аппарат	обобщения
	аналитической	геометрических	векторной	информации,
	геометрии на	понятий и теорем	алгебры для	постановку и
	плоскости и в	на	решения	методы решения
	пространстве;	математическом	геометрических	основных задач

Владеет
фрагментарно
понятийным и
формальным
математическим
аппаратом
элементарной и
аналитической
геометрии.

- использовать аппарат элементарной геометрии в научно-исследовательской деятельности. Слабо владеет навыками самостоятельных исследований в области элементарной геометрии.

языке;

задач; применять основные формулы элементарной геометрии при решении практических задач. Владеет понятийным И формальным математическим аппаратом элементарной и аналитической геометрии.

элементарной геометрии. Умеет доказывать основные теоремы элементарной аналитической геометрии на плоскости И В пространстве; доказывать основные теоремы, формулировать определения геометрических понятий и теорем на математическом языке, использовать аппарат геометрии научноисследовательской деятельности. Владеет понятийным И формальным математическим аппаратом геометрии, навыками самостоятельных исследований В области геометрии.

Оценочные средства

1.1 Задания для текущего контроля

1) Задания для оценки «ОПК-1»:

Задания для лабораторных занятий

Методические рекомендации. Решение задач осуществляется во время лабораторных занятий. Во время самостоятельной подготовки к лабораторным занятиям студент пользуется конспектами лабораторных занятий, литературой и Интернетресурсами по дисциплине (см. «Учебно-методическое и информационное обеспечение дисциплины» в рабочей программе дисциплины).

Критерии оценивания.

На лабораторных занятиях оценивается: самостоятельность при выполнении работы, грамотность в оформлении, правильность выполнения заданий, уровень подготовки к занятиям и т.д.

Цель решаемых задач: диагностировать умения разрабатывать алгоритмы решения задач.

Примерные задания

Вариант 1.

- 1. Длина основания треугольника равна 36 см. Прямая, параллельная основанию, делит площадь треугольника пополам, Найти длину отрезка этой прямой, заключенного между сторонами треугольника.
- 2. Основание равнобедренного треугольника равно $4\sqrt{2}$ см, а медиана боковой стороны 5 см. Найти длины боковых сторон.
- 3. Точка на гипотенузе, равноудаленная от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40 см. Найдите катеты треугольника.
- 4. Найти радиус окружности, описанной около прямоугольного треугольника, если радиус окружности, вписанной в этот треугольник, равен 3 см, а один из катетов равен 10 см.
- 5. Через концы дуги окружности, содержащей 120°, проведены касательные, и в фигуру, ограниченную этими касательными и данной дугой, вписана окружность. Доказать, что ее длина равна длине исходной дуги.
- 6. Каждая из трех равных окружностей радиуса *r* касается двух других. Найти площадь треугольника, образованного общими внешними касательными к этим окружностям.
- 7. Сторона квадрата, вписанного в окружность, отсекает сегмент, площадь которого равна $(2^{\pi}$ 4) см². Найти площадь квадрата.
- 8. В ромб, который делится своей диагональю на два равносторонних треугольника, вписана окружность радиуса 2. Найти сторону ромба.
- 9. Найти множество всех точек, для каждой из которых отношение расстояний от двух данных точек A и B есть постоянная величина λ , не равная единице (окружность Аполлония).
- 10. Доказать, что центр S описанной окружности, ортоцентр H и центр тяжести T треугольника лежат на одной прямой (прямая Эйлера), (метод координат).

Вариант 2

- 1. В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.
- 2. Найти площадь равнобедренного треугольника, если основание его равно a, а длина высоты, проведенной к основанию, равна длине отрезка, соединяющего середины основания и боковой стороны.
- 3. Основание треугольника равно 30 см, а боковые стороны 26 и 28 см. Высота разделена в отношении 2 : 3 (считая от вершины), и через точку деления проведена прямая, параллельная основанию. Определить площадь полученной при этом трапеции.
- 4. Основание треугольника равно 30 см, а боковые стороны 26 и 28 см. Высота разделена в отношении 2 : 3 (считая от вершины), и через точку деления проведена прямая, параллельная основанию. Определить площадь полученной при этом трапеции.
- 5. Три окружности разных радиусов попарно касаются друг друга. Прямые, соединяющие их центры, образуют прямоугольный треугольник. Найти радиус меньшей окружности, если радиусы большей и средней окружностей равны 6 и 4 см.
- 6. В квадрат вписан другой квадрат, вершины которого лежат на сторонах первого, а стороны составляют со сторонами первого углы в 60°. Какую часть площади данного квадрата составляет площадь вписанного?
- 7. Высота ромба, проведенная из вершины тупого угла, делит его сторону на отрезки длиной m и n (m считать от вершины острого угла). Определить диагонали ромба.
- 8. Найти площадь равнобедренной трапеции, если высота равна h, а боковая сторона видна из центра описанной окружности под углом 60° .
- 9. Дана окружность радиуса r и на ней точка A. Найти множество точек, делящих всевозможные хорды, проведенные через точку A, в одном и том же отношении λ , где $\lambda > 0$.
- 10. Доказать, что три прямые, содержащие высоты треугольника, пересекаются в одной точке (метод координат).

Задания для самостоятельной работы

Самостоятельная аудиторная работа студентов проводится в форме самостоятельного решения задач на лабораторных занятиях с дальнейшим их разбором и обсуждением; поиска решений проблемных ситуаций, предложенных на лабораторных занятиях; поиска и устранения ошибок, заложенных в представлении материала преподавателем и допущенных другими студентами.

Студентам предлагается список тем для самостоятельного разбора, по одной из которых необходимо сделать доклад и представить на одном из занятий во второй половине семестра.

Темы докладов

- 1. Движения плоскости.
- 2. Симметрия в архитектуре, музыке, природе.
- 3. Геометрия в архитектуре.
- 4. Геометрия треугольника.
- 5. Геометрия Лобачевского.

- 6. «Начала» Евклида. Логика строения. Постулаты и аксиомы.
- 7. Применение геометрии к решению алгебраических задач.
- 8. Геометрические построения, выполняемые циркулем и линейкой, три классические задачи, неразрешимые циркулем и линейкой.
- 9. Геометрия на сфере.
- 10. Геометрия и теория групп.
- 11. Проективная геометрия.
- 12. Теорема Дезарга.
- 13. Аксиоматика, аксиоматический метод в математике.
- 14. Аффинная геометрия.
- 15. Геометрия подобия.
- 16. Геометрические задачи на построение.
- 17. Геометрия на цилиндрической поверхности.
- 18. Конические сечения, интересные оптические свойства коник.
- 19. Пучки прямых и плоскостей.
- 20. Аффинная классификация линий второго порядка.

2) Задания для оценки «ПК-2»:

Тесты

Методические указания. Тест является простой формой текущего контроля, направленной на проверку владения основными понятиями. Тест состоит из небольшого количества простых задач, вопросов. Тестирование может проводиться во время аудиторных занятий, в рамках самостоятельной внеаудиторной работы. Тесты для текущего контроля могут выполняться на портале системы дистанционного обучения Ipsilon Uni.

Критерии оценивания:

оценка «зачтено» выставляется студенту, если количество правильных ответов составляет 50 и более процентов;

оценка «не зачтено» выставляется студенту, если количество правильных ответов менее 50%.

Баллы выставляются согласно программе оценивания учебной деятельности студента (см. «Данные для учета успеваемости студентов в БАРС» в рабочей программе дисциплины).

Примерные тесты

Вариант 1

	Бариант 1
1. Связанні	ые векторы, имеющие одинаковую длину и направление, называются
Ε	соразмерными
	сонаправленными
	конгруэнтными
Г	равными.
2. Два вект	ора коллинеарны тогда и только тогда, когда

- .. And not be the first the first term in the fi
 - □ они линейно зависимы
 - □ они линейно независимы

	□ они лежат в одной плоскости
	их соответствующие координаты пропорциональны.
3. Коор	динаты вектора относительно произвольного базиса – это
	□ сумма координат его начала и конца
	□ коэффициенты разложения этого вектора по базису
	□ ортогональные проекции этого вектора на базисные векторы.
4. Скал	ярный квадрат вектора по определению – это
	□ квадрат координат этого вектора
	□ сумма квадратов координат этого вектора
	□ квадрат длины этого вектора
	□ скалярное произведение вектора самого на себя
5. Обра	зуют ли векторы с координатами $\overline{a}(2;3)$ и $\overline{b}(-1;5)$ базис на плоскости?
	□ д а
	□ нет
	Вариант 2
1. Два в	вектора коллинеарны тогда и только тогда, когда
	найдется такое число, что один из них равен произведению этого числа на другой вектор
	они линейно независимы
	они лежат в одной плоскости
	их длины пропорциональны
	их соотвествующие координаты пропорциональны.
2. Отно	ошение конгруэнтности свободных векторов обладает свойствами
	аддитивность
	транзитивность
	коммутативность
	симметричность
□ j	рефлексивность.
3. Базис	с на плоскости – это

две произвольных оси координат две взаимно перпендикулярных оси коордиант упорядоченная пара неколлинеарных векторов упорядоченная пара единичных векторов упорядоченная пара векторов. 4. Ортонормированные базис состоит из □ произвольных упорядоченных векторов неколлинеарных векторов □ некомпланарных векторов единичных взаимно перпендикулярных векторов □ единичных векторов. 5. Векторное произведение векторов $\vec{a}(6;-3;1)$ и b(1;2;2) имеет координаты \Box (6;-6;2) \Box (-8;-11;15) \Box (-8;11;15) □ другой ответ.

Опрос

Методические рекомендации. Опрос осуществляется во время занятий. Опрос может проводиться как в устном, так и в письменном виде. Во время самостоятельной подготовки к занятиям студент пользуется конспектами, литературой и Интернетресурсами по дисциплине (см. «Учебно-методическое и информационное обеспечение дисциплины» в рабочей программе дисциплины).

Критерии оценивания: полнота и правильность ответа; степень осознанности, понимания изученного материала. Баллы выставляются согласно программе оценивания учебной деятельности студента («Данные для учета успеваемости студентов в БАРС» в рабочей программе дисциплины).

Цели опроса: выявить уровень усвоения материала.

Вопросы для текущего контроля успеваемости

- 1. Аксиоматический метод в геометрии.
- 2. Геометрические задачи на доказательство. Основные методы решения задач на доказательство.
- 3. Геометрические задачи на построение. Постановка задачи. Инструменты. Схема решения задачи на построение. Основные методы решения задач на построение.
 - 4. Векторный и координатный методы решения задач по планиметрии.

- 5. Метод геометрических преобразований. Решение задач на доказательство и вычисление методом геометрических преобразований.
 - 6. Взаимное расположение прямых и плоскостей в пространстве.
- 7. Параллельность прямых в пространстве, параллельность прямой и плоскости, параллельность плоскостей.
 - 8. Признаки перпендикулярности двух прямых.
 - 9. Признаки перпендикулярности прямой и плоскости.
 - 10. Признаки перпендикулярности плоскостей в пространстве.
- 11. Многогранники. Свойства параллелепипеда и тетраэдра. Призма, виды призм, свойства призм, площадь поверхности призмы. Пирамида, ее свойства, площадь поверхности пирамиды.
 - 12. Построение сечений многогранников.
 - 13. Тела вращения. Цилиндр, конус, сфера.
- 14. Комбинация многогранников и тел вращения. Вписанная и описанная сфера. Условия существования сферы, вписанной и описанной около многогранника.

1.2 Промежуточная аттестация

1 семестр

По итогам *практической подготовки* составляется письменный отчет. Студенты представляют на кафедру отчеты о практической подготовке в печатной и электронной форме, оформленные в соответствии с правилами и требованиями, установленными Университетом. После проверки и предварительной оценки этих отчетов руководителями практической подготовки (с их подписью) студенты устно отчитываются по практике. Основными целями отчета являются:

- краткое изложение теоретических и практических основ изученных ранее результатов, использованных в ходе прохождения практической подготовки;
- формализация и детальное изложение разработок, осуществленных студентом в ходе прохождения практической подготовки;
 - выводы, полученные в результате выполнения работ по практической подготовке. Типовой отчет по практике включает следующие разделы:
 - 1) титульный лист с наименованием темы работы, выполненной на практике;
 - 2) введение с обоснованием актуальности изучаемой задачи, формулировкой целей работы, ее кратким содержанием и возможных применений;
 - 3) постановка задачи, построение ее математической модели и теоретическое обоснование решения задачи;
 - 4) разработка алгоритма решения рассматриваемой задачи;
 - 5) реализация алгоритма на одном из языков программирования и проверка правильности программы на конкретном примере;
 - 6) список литературы, использованной при работе и цитированной в отчете;
 - 7) приложения с основными текстами программы и результатами выполнения программы (если они есть).
- а) примеры типовых заданий

Примерный вид задания для отчета:

N – номер варианта (совпадает с номером в списке группы)

1) задания для оценки ОПК-1

1. В пространстве относительно некоторого базиса даны координаты трех векторов

$$\underline{\text{при }N-\text{четном}} \text{:} \qquad \bar{a} \bigg(2; \frac{N-4}{2}; 3\bigg), \bar{b} \bigg(1; \frac{N+4}{2}; -2\bigg), \bar{c} \bigg(3, \frac{N+6}{2}; -2\bigg); \\$$

$$\underline{\text{при }N-\text{нечетном}}\colon\quad \vec{a}\bigg(2;\frac{N+7}{2};-3\bigg), \vec{b}\bigg(3;\frac{N-5}{2};4\bigg), \vec{c}\bigg(-1;\frac{N+1}{2};5\bigg).$$

- 1) Найти координаты вектора $2\vec{a} + 5\vec{b} \vec{c}$.
- 2) Найти координаты вектора $\vec{b}(\vec{ac})$.
- 3) Вычислить $\vec{a}^2 + \vec{b}^2 \vec{b}\vec{c}$.
- 4) Найти косинус угла между векторами \vec{a} и \vec{b} .
- 5) Найти [ав], [ав], [[ав]с], [а[вс]], авс.

2. На плоскости относительно декартовой системы координат даны координаты трех точек:

$$\underline{\text{при }N-\text{четном}} \text{:} \qquad A\!\!\left(\frac{N+4}{2};\!1\right)\!\!, B\!\!\left(\frac{N+10}{2};\!4\right)\!\!, C\!\!\left(\frac{N+4}{2};\!7\right)\!\!;$$

$$\underline{\text{при }N-\text{нечетном}} \text{:} \quad A\!\!\left(1;\frac{N+1}{2}\right)\!\!,\; B\!\!\left(4;\frac{N+7}{2}\right)\!\!,\; C\!\!\left(1;\frac{N+13}{2}\right)\!\!.$$

Найти:

- 1) координаты вектора \overline{CA} ;
- 2) длину отрезка АВ;
- 3) площадь треугольника АВС;
- 4) угол В.

3. Относительно декартовой системы координат даны координаты вершин треугольника:

при N - четном:
$$A\left(\frac{N+8}{2};7\right), B\left(\frac{N-8}{2};1\right), C\left(\frac{N-2}{2};-3\right);$$

$$\underline{\text{при N}-\text{нечетном}} \colon \quad A\!\!\left(3;\frac{N+13}{2}\right)\!\!,\; B\!\!\left(-5;\frac{N+1}{2}\right)\!\!,\; C\!\!\left(-2;\frac{N-7}{2}\right)\!\!.$$

Составить уравнения:

- 1) трех его сторон;
- 2) медианы, проведенной из вершины С;
- 3) высоты, опущенной из вершины А на сторону ВС;
 - 4. Относительно декартовой системы координат даны координаты четырех точек:

$$\underline{\text{при N - четном}} \colon \ A\!\!\left(\frac{N+6}{2};\!-\frac{N}{2};\!\frac{N}{2}\right)\!, B\!\!\left(\frac{N}{2};\!\frac{12-N}{2};\!\frac{N}{2}\right)\!, C\!\!\left(\frac{N}{2};\!-\frac{N}{2};\!\frac{N-6}{2}\right)\!; D\!\!\left(\frac{N}{2};\!-\frac{N}{2};\!\frac{N}{2}\right)\!;$$

$$\underline{\text{при N} - \text{нечетном}} \colon \ A\bigg(\frac{N+3}{2}; -1; \frac{N+1}{2}\bigg), B\bigg(\frac{N-3}{2}; 5; \frac{N+1}{2}\bigg), C\bigg(\frac{N-3}{2}; -1; \frac{N-5}{2}\bigg); D\bigg(\frac{N-3}{2}; -1; \frac{N+1}{2}\bigg).$$

Составить уравнения плоскостей:

- 1) π_1 , проходящей через точки A,B,D;
- 2) π_2 , проходящей через точки A и B параллельно оси Oz;
- 3) π_3 , зная, что точка М является основанием перпендикуляра, опущенного из начала координат на эту плоскость.
- **5.** Относительно декартовой системы координат даны координаты точки A и координаты векторов \bar{a} и \bar{b} :

$$\underline{\text{при N - четном}} \colon \quad A\!\!\left(2; \frac{N}{2}; \frac{N\!-\!20}{2}\right)\!, \, \overline{a}\!\!\left(-1; \frac{N\!-\!16}{2}; 2\right)\!, \, \overline{b}\!\!\left(\frac{N\!-\!10}{2}; 1; \!-\!3\right)\!;$$

$$\underline{\text{при }N-\text{нечетном}} \colon \ A\!\!\left(\frac{N\!-\!15}{2};\!1;\frac{N\!-\!7}{2}\right)\!, \overline{a}\!\!\left(2;\frac{N\!-\!9}{2};\!1\right)\!, \overline{b}\!\!\left(-3;\!2;\frac{N\!-\!11}{2}\right)\!.$$

Составить:

- 1) каноническое уравнение прямой ℓ_1 , проходящей через точку A параллельно вектору \bar{a} ;
- 2) параметрические уравнения прямой ℓ_2 , проходящей через точку A параллельно вектору $\overline{\mathbf{b}}$;
- 3) каноническое уравнение прямой ℓ_3 , проходящей через начало координат О и точку A; представить прямую ℓ_3 как линию пересечения двух плоскостей.

2) задания для оценки ПК-2

6. В данной системе координат эллипс имеет каноническое уравнение. Составить это уравнение, зная, что расстояние между фокусами равно 2c, большая полуось равна а:

при N - четном:
$$c = \frac{N}{2}, a = \frac{N+2}{2};$$

при N – нечетном:
$$c = \frac{N+1}{2}, a = \frac{N+5}{2}$$
.

Найти:

- 4) эксцентриситет эллипса;
- 5) уравнения директрис;
- 6) расстояние от правого фокуса до ближайшей директрисы.
- 7. В данной системе координат гипербола имеет каноническое уравнение. Составить это уравнение, зная, что расстояние между фокусами равно 2c, большая полуось равна а:

при N - четном:
$$c = \frac{N+4}{2}$$
, $a = \frac{N}{2}$;

<u>при N — нечетном</u>: $c = \frac{N+3}{2}$, $a = \frac{N+1}{2}$.

Найти:

- 1) эксцентриситет гиперболы;
- 2) уравнения директрис;
- 3) уравнения асимптот;
- 4) длину отрезка асимптоты гиперболы, заключенного между ее центром и директрисой;
- 5) расстояния от фокусов гиперболы до ее асимптот;
- 6) уравнение сопряженной гиперболы; ее эксцентриситет, уравнения директрис.
- 8. В данной системе координат парабола имеет каноническое уравнение. Составить это уравнение, зная, что расстояние от фокуса до директрисы равно N.

Найти:

- 1) координаты фокуса;
- 2) уравнение директрисы;
- 3) координаты точек пересечения параболы с окружностью $x^2 + y^2 = 3N^2$.

ФОС для проведения промежуточной аттестации одобрен на заседании кафедры геометрии (протокол № 16 от 1 июня 2023 года).

Автор:

к.ф-.м.н. Ю.В. Шевцова