МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕРЖ АТО ИНСТИТУТА ФИЗИКИ

МНСТИТУТА ФИЗИКИ

С.Б. Вениг

2023 г.

Программа учебной практики

Учебная вычислительная практика

Направление подготовки бакалавриата 22.03.01 «Материаловедение и технологии материалов»

Профиль подготовки бакалавриата «Нанотехнологии, диагностика и синтез современных материалов»

Квалификация (степень) выпускника Бакалавр

Форма обучения очная

Саратов, 2023

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Клецов А.А.	Kum	20.06.23
Председатель НМК	Скрипаль Ан.В.	AGN	20.06.23
Заведующий кафедрой	Вениг С.Б.		20.06.23
Специалист Учебного управления			

1. Цели учебной вычислительной практики

Целью учебной вычислительной практики является закрепление и расширение у студентов комплекса общепрофессиональных и универсальных компетенций в области решения задач профессиональной деятельности с применением информационно-коммуникационных технологий и методов моделирования, а также формирование практических навыков выбора и применения этих методов для моделирования физических, химических и технологических процессов.

2. Тип (форма)проведения учебной вычислительной практикии способ её проведения

Учебная вычислительная практика соответствует дополнительно установленному типу практики - вычислительная практика. Способ проведения – стационарная.

3. Место учебной вычислительной практики в структуре ООП

Вычислительная практика относится к обязательной части блока Б2 «Практики», проводится у студентов очной формы обучения института физики СГУ, обучающихся по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», по окончании 4 учебного семестра.

Материал практики опирается на ранее приобретенные студентами знания по дисциплинам «Векторный и тензорный анализ», «Математический ТФКП», «Дифференциальные уравнения», «Аналитическая линейная алгебра», «Принципы построения и геометрия «Методы информационных систем», численного анализа материаловедении» и подготавливает студентов к освоению в том же или в последующих семестрах таких дисциплин как «Основы физического материаловедения», «Моделирование и оптимизация производственных систем и технологических процессов», «Физические процессы в материалах под действием оптического и СВЧ излучений».

4. Результаты обучения по учебной вычислительной практике

Код и наименование компетенции	Код и наименование	Результаты обучения		
компетенции	индикаторов достижения компетенции			
	компетенции			
УК-6	УК-6.1. Применяет знание о	знать: о своих ресурсах и их		
Способен управлять	своих ресурсах и их пределах	пределах (личностных,		
J 1	(личностных, ситуативных,	ситуативных, временных и		
своим временем,	временных и т.д.) для	т.д.);		
выстраивать и	успешного выполнения	<u>уметь</u> : применять знание о		
реализовывать	порученной работы.	своих ресурсах и их пределах		
траекторию саморазвития		(личностных, ситуативных,		
на основе принципов		временных и т.д.) для		

образования в течение всей жизни

УК-6.2. Понимает важность планирования перспективных целей деятельности с учетом условий, средств, личностных возможностей, этапов карьерного роста, временной перспективы развития деятельности и требований рынка труда.

УК-6.3. Реализует намеченные цели деятельности с учетом условий, средств, личностных возможностей, этапов карьерного роста, временной перспективы развития деятельности и требований рынка труда

УК-6.4. Критически оценивает эффективность использования времени и других ресурсов при решении поставленных задач, а также относительно полученного результата.

УК-6.5. Демонстрирует интерес к учебе и использует предоставляемые возможности для приобретения новых знаний и навыков.

успешного выполнения порученной работы;

владеть: навыками применения знаний о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.) для успешного выполнения порученной работы;

ОПК-5

Способен решать научноисследовательские задачи при осуществлении профессиональной деятельности с применением современных информационных технологий и прикладных аппаратно-программных средств **ОПК-5.1.** Демонстрирует умение решать поставленные научно-исследовательские задачи при осуществлении профессиональной деятельности.

ОПК-5.2 Имеет представления о возможностях и сфере применения прикладных аппаратно-программных средствах при решении научно-исследовательских задач

знать: современные информационные технологии для решения поставленных научно-исследовательских задач;

уметь: применять современные информационные технологии для решения поставленных научно-исследовательских задач;

владеть: умением выбирать современные информационные технологии для решения поставленных

ОПК-5.3. Демонстрирует умение выбора и применения современных информационных технологий в соответствии с поставленной задачей при решении научно-исследовательские задач.

научно-исследовательских задач;

ОПК-8

Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности

ОПК-8.1. Понимает процессы, методы поиска, сбора, хранения, обработки, предоставления, распространения информации и способы реализации таких процессов и методов

ОПК-8.2. Выбирает современные использует информационнокоммуникационные интеллектуальные технологии, инструментальные среды, программно-технические платформы и программные средства, TOM числе отечественного производства, для решения профессиональной задач деятельности.

ОПК-8.3. Анализирует профессиональные задачи, выбирает и использует подходящие ИТ-решения.

современные знать: информационнокоммуникационные И интеллектуальные технологии, инструментальные среды, программно-технические платформы и программные средства для решения задач профессиональной деятельности, в том числе лля численных расчетов типичных физических задач; уметь: применять

современные информационнокоммуникационные И интеллектуальные технологии, инструментальные среды, программно-технические платформы и программные средства для решения задач профессиональной деятельности, в том числе численных расчетов типичных физических задач; владеть: современными информационнокоммуникационными И интеллектуальными технологиями,

инструментальными средами, программно-технические

решения

деятельности, в том числе

типичных физических задач;

численных

средствами

задач

расчетов

платформами программными

профессиональной

ДЛЯ

ДЛЯ

ПК-1. Способен использовать современные информационнокоммуникационные технологии, глобальные информационные ресурсы В научноисследовательской расчетно-аналитической деятельности в области материаловедения технологии материалов

часа.

ПК-1.1. Знаком с современными информационно-коммуникационными технологиями, осуществляет выбор глобальных информационных при решении поставленных профессиональных задач

современного программного обеспечения и его использования при решении задач в научно-исследовательской и расчетно-аналитической деятельности в области материаловедения и технологии;

знать: навыки использования

ПК-1.2. Демонстрирует использования навыки современного программного обеспечения его использования при решении задач научноисследовательской расчетно-аналитической деятельности области материаловедения технологии

уметь: применять навыки использования современного программного обеспечения и его использования при решении задач в научно-исследовательской и расчетно-аналитической деятельности в области материаловедения и технологии;

ПК-1.3. Применяет цифровую технику современные информационные средства при обработке и анализе ланных при составлении отчетов полготовке И презентаций

владеть: навыками использования современного программного обеспечения и его использования при решении задач в научно-исследовательской и расчетно-аналитической деятельности в области материаловедения и технологии.

5. Структура и содержание учебной вычислительной практики Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144

iaca.	_			1	
$N_{\underline{0}}$	Разделы (этапы) практики	Виды учебной работы		Формы текущего контроля	
		на практи	ке, включая		
Π/Π		самосто	ятельную		
		работу с	гудентов и		
		трудо	емкость		
		(в ч	acax)		
		Практика	CPC		
1	Подготовительный этап, включающий инструктаж по технике безопасности	16	4	Проверка знаний по инструкциям и пр. документам	
2	Выполнение индивидуальных заданий	44	20	Письменные промежуточные отчеты	

3	Оформление подготовка отче	результатов; та по практике	40	20	Проект презентация	отчета,
	ИТОГО 144 час	ca	100	44	Дифференциров зачет	анный

Содержание практики

1. Подготовительный этап включает инструктаж по технике безопасности и охране труда, ознакомление с инструкциями работы в компьютерном классе СГУ. Подготовительный этап также включает вводный курс ознакомительных лекций по основным методам моделирования физических, химических и технологических процессов.

Содержание ознакомительных лекций:

- *Cpeda Visual Basic* 6.0. Типы данных. Основные элементы программирования (объявление переменных, констант, массивов; работы с процедурами и функциями и т.д.), управляющие конструкции и циклы. Отладка программ и устранение ошибок.
- *Подбор* эмпирических формул. Определение параметров эмпирической зависимости. Метод наименьших квадратов.
- Численное интегрирование. Метод прямоугольников и трапеций. Метод Симпсона.
- *Методы оптимизации*. Задачи на экстремумы. Метод Ньютона. Минимум функции нескольких переменных.
- Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Методы Эйлера. Методы Рунге-Кутта.
- Построение квантово-механической модели атома водорода Эрвина Шредингера.
- 2. Выполнение индивидуальных заданий. Выполнение заданий происходит как самостоятельно, так и в группах.

Примерные темы заданий:

- 1) Программирование линейных и разветвляющихся вычислительных процессов.
- 2) Программирование циклических вычислительных процессов.
- 3) Программирование определения параметров эмпирической зависимости методом наименьших квадратов.
- 4) Программированиечисленного интегрирования методами прямоугольников и трапеций.
- 5) Программированиезадачи на экстремумы.
- 6) Программированиеметодов Эйлера.
- 7) Программирование методов Рунге-Кутта.
- 8) Работа с квантовой моделью атома водорода.
- 3. Подготовка отчета по практике. На данном этапе планируется обсуждение вопросов, связанных с анализом и обработкой полученных

Формы проведения учебной вычислительной практики

Учебная вычислительная практика проводится в форме лабораторных исследований, выполнения практических заданий и самостоятельной работы, направленных на повышение практической подготовки студентов, и самостоятельной работы. Практика проходит под контролем руководителя учебного или научно-исследовательского подразделения (кафедры, лаборатории, предприятия). Формы проведения практики: поисково-исследовательская и проектно-учебная.

Место и время проведения учебной вычислительной практики

Местом проведения учебной вычислительной практики является компьютерные классы института физики СГУ им. Н.Г. Чернышевского.

Студенты проходят учебную вычислительную практику по окончании летней сессии в 4 семестре, в течение 2 и 2/3 недель.

Формы промежуточной аттестации (по итогам практики)

(дифференцированный зачет) учебной итогам вычислительной практики проводится на основании оформленного в соответствии с установленными требованиями письменного отчета, отзыва вычислительной практики. Итоги учебной руководителя практики собеседовании или подводятся В процессе публичной защитыи включаются в сессию 5-го семестра. По итогам дифференцированного зачета (отлично, удовлетворительно, хорошо, выставляются оценки неудовлетворительно).

6. Образовательные технологии, применяемые на учебной вычислительной практике

При прохождении практики с целью создания условий для самоактуализации и самореализации обучающихся, предоставления возможностей для конструирования собственного знания, используются следующие современные образовательные технологии:

- информационно-коммуникационные технологии;
- проблемное обучение;
- творческие задания;
- дискуссии на заданную тему.

В процессе занятий обучающиеся по заданию и под руководством преподавателя выполняют одну или несколько практических работ. При проведении занятий используется персональный компьютер. Применяемые методы обучения, способствуют закреплению и совершенствованию знаний, овладению умениями и получению новых навыков.

Условия обучения инвалидов и лиц с ограниченными возможностями здоровья:

- предоставление инвалидам по зрению или слабовидящим возможностей использовать крупноформатные наглядные материалы;
- организация коллективных занятий в студенческих группах с целью оказания помощи в получении информации инвалидам и лицам с ограниченными возможностями по здоровью;
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья;
- использование индивидуальных графиков обучения:
- использование дистанционных образовательных технологий.

7. Учебно-методическое обеспечение самостоятельной работы студентов на учебной вычислительной практике.

Самостоятельная работа студентов при прохождении учебной вычислительной практики проводится в течение всего периода практики и заключается в чтении и изучении литературы, изучении программного обеспечения, оформлении отчета по практике, работе в компьютерном классе или библиотеке, подготовке презентации.

Основными критериями качества организации самостоятельной работы является наличие контроля результатов самостоятельной работы и технических условий выполнения заданий.

Рекомендуется:

• при подготовке к выполнению практических заданий тщательно изучать лекционный материал на заданную тему, задавать уточняющие вопросы преподавателю, иметь отдельную тетрадь, для выполнения заданий и оформления отчетов.

8. Данные для учета успеваемости студентов в БАРС

Таблица 1.2- Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекци и	Лаборато рные занятия	Практиче ские занятия	тельная	Автоматизир ованное тестирование	учебной	Промежуточ -ная аттестация	Итого
4	0	0	40	30	0	0	0	70
5	0	0	0	0	0	0	30	30
Итого	0	0	40	30	0	0	30	100

Программа оценивания учебной деятельности студента

4 семестр

Лекции

Не предусмотрено.

Лабораторные занятия

Не предусмотрено.

Практические занятия

Участие в дискуссиях и обсуждении результатов: аргументированность рассуждений, эрудиция, способность представить и доказать свою точку зрения, глубина (поверхностность) анализа, правильность выполнения работ, грамотность выполнения, объем выполненных работ – от 0 до 40 баллов

Самостоятельная работа

Самостоятельное изучение тем по заданию руководителя практики, систематизация и анализ результатов вычислений - от 0 до 30 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Не предусмотрено.

Промежуточная аттестация

Не предусмотрено.

5 семестр

Лекции

Не предусмотрено.

Лабораторные занятия

Не предусмотрено.

Практические занятия

Не предусмотрено.

Самостоятельная работа

Не предусмотрено.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Не предусмотрено.

Промежуточная аттестация

Промежуточная аттестация по данному виду учебной практики проводится в форме дифференцированного зачета.

При проведении промежуточной аттестации: ответ на «отлично» оценивается от 27 до 30 баллов; ответ на «хорошо» оценивается от 20 до 26 баллов; ответ на «удовлетворительно» оценивается от 11 до 19 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 4, 5 семестры по учебной практике «Вычислительная практика» составляет 100 баллов.

Пересчет полученной студентом баллов учебной суммы ПО оценку зачёт) вычислительной (дифференцированный практике таблицей 2.2, при этом, осуществляется в соответствии с на был собеседовании или публичной защите дан ответ на «неудовлетворительно», то получение дифференциального зачета по учебной вычислительной практике возможно только после проведения повторной защиты/собеседования.

Таблица 2.2-Таблица пересчета полученной студентом суммы баллов по учебной практике «Вычислительная практика» в оценку (дифференцированный зачет):

81-100 баллов	«отлично» / зачтено
65-80 баллов	«хорошо» / зачтено
50-64 баллов	«удовлетворительно» / зачтено
0-49 баллов	«неудовлетворительно» / не зачтено

9. Учебно-методическое и информационное обеспечение учебной вычислительной практики.

а) литература:

- 1. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М. : БИНОМ. Лаб. знаний, 2008.-636 с. (109 экз.)
- 2. Калиткин, Н. Н., Численные методы: учебное пособие / Н. Н. Калиткин; под ред. А. А. Самарского. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2011. 586, [6] с.(53 экз.)
- 3. Демидович Б. П., Марон И. А., Шувалова Э. 3. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. СПб.; М.; Краснодар: Лань, 2010. 400 с. (30 экз.)
- 4. Браун С. VisualBasic 6. Учебный курс/ пер. с англ. Е. Матвеев. М. : СПб. : Питер, 2009. 573с. (10 экз.)
- 5. Турчак Л. И., Плотников П. В. Основы численных методов. 2-е изд., перераб. и доп. М.: ФИЗМАТЛИТ, 2005. 300с. (16 экз.)

б) программное обеспечение и Интернет-ресурсы

- 1. Microsoft Windows 7, Microsoft Windows 8 лицензия № 61137891 от 09.11.2012).
- 2. Microsoft Office профессиональный 2007 (Word, Excel, Access, PowerPoint, Outlook, InfoPath, Publisher) лицензия № 42226296.
- 3. Microsoft Office Standart 2010 лицензия № 67334291.
- 4. Spaysep Google Chrome.
- 5. http://library.sgu.ru/ Зональная научная библиотека им. В.А. Артисевич Саратовского государственного университета им. Н.Г. Чернышевского.
- 6. https://colab.research.google.com Colaboratory, позволяет писать и выполнять код Python в браузере.

10. Материально-техническое обеспечение учебной вычислительной практики.

Занятия проводятся в компьютерном классе с лицензионной операционной системой Windows и пакетом Microsoft Office с программой Microsoft Office Excel. Возможны программы Turbo Pascal, Delphi, Visual C++.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 22.03.01 «Материаловедение и технологии материалови профилем подготовки «Нанотехнологии, диагностика и синтез современных материалов»

Автор: доцент кафедры материаловедения, технологии и управления качеством, кандидат физико-математических наук, Ph.D.,Клецов А.А.

Программа разработана в 2021 г. и одобрена на заседании кафедры материаловедения, технологии и управления качеством от 20.09.2021 г., протокол N 2.

Программа актуализирована в 2023 г. и одобрена на заседании кафедры материаловедения, технологии и управления качеством от 20.06.2023 г., протокол № 11.